BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30821957)

  • 1. Analysis of CH
    Gülsoy Z; Sezginel KB; Uzun A; Keskin S; Yıldırım R
    ACS Comb Sci; 2019 Apr; 21(4):257-268. PubMed ID: 30821957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Evolution of High-Performing Metal Organic Frameworks for Methane Adsorption.
    Beauregard N; Pardakhti M; Srivastava R
    J Chem Inf Model; 2021 Jul; 61(7):3232-3239. PubMed ID: 34264660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Text Mining Metal-Organic Framework Papers.
    Park S; Kim B; Choi S; Boyd PG; Smit B; Kim J
    J Chem Inf Model; 2018 Feb; 58(2):244-251. PubMed ID: 29227671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage.
    Alezi D; Belmabkhout Y; Suyetin M; Bhatt PM; Weseliński ŁJ; Solovyeva V; Adil K; Spanopoulos I; Trikalitis PN; Emwas AH; Eddaoudi M
    J Am Chem Soc; 2015 Oct; 137(41):13308-18. PubMed ID: 26364990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Exceptionally Water Stable Metal-Organic Framework with Amide-Functionalized Cages: Selective CO
    Jin WG; Chen W; Xu PH; Lin XW; Huang XC; Chen GH; Lu F; Chen XM
    Chemistry; 2017 Sep; 23(53):13058-13066. PubMed ID: 28590089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Open Metal Site-Free
    Zhang ZH; Fang H; Xue DX; Bai J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44956-44963. PubMed ID: 34498839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of machine learning for predicting the methane uptake and working capacity of MOFs.
    Suyetin M
    Faraday Discuss; 2021 Oct; 231(0):224-234. PubMed ID: 34195741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.
    Sim J; Yim H; Ko N; Choi SB; Oh Y; Park HJ; Park S; Kim J
    Dalton Trans; 2014 Dec; 43(48):18017-24. PubMed ID: 25351165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning.
    Luo Y; Bag S; Zaremba O; Cierpka A; Andreo J; Wuttke S; Friederich P; Tsotsalas M
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202200242. PubMed ID: 35104033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate adsorption by metal organic frameworks: Insights from a systematic review, meta-analysis, and predictive modelling with artificial neural networks.
    Alatrista G; Pratt C; El Hanandeh A
    Chemosphere; 2023 Oct; 339():139674. PubMed ID: 37517668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH4 Storage.
    Spanopoulos I; Tsangarakis C; Klontzas E; Tylianakis E; Froudakis G; Adil K; Belmabkhout Y; Eddaoudi M; Trikalitis PN
    J Am Chem Soc; 2016 Feb; 138(5):1568-74. PubMed ID: 26694977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational design of tetrazolate-based metal-organic frameworks for CH
    Wu X; Peng L; Xiang S; Cai W
    Phys Chem Chem Phys; 2018 Dec; 20(48):30150-30158. PubMed ID: 30357179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration.
    Ursueguía D; Díaz E; Ordóñez S
    Sci Total Environ; 2021 Oct; 790():148211. PubMed ID: 34111784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient Boosted Machine Learning Model to Predict H
    Bailey T; Jackson A; Berbece RA; Wu K; Hondow N; Martin E
    J Chem Inf Model; 2023 Aug; 63(15):4545-4551. PubMed ID: 37463276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latest insights on separation and storage of carbon compounds in buildings towards sustainable environment: Recent innovations, challenges, future perspectives and application of machine learning.
    Su Z; Xing L; Ali HE; Alkhalifah T; Alturise F; Khadimallah MA; Assilzadeh H
    Chemosphere; 2023 Jul; 329():138573. PubMed ID: 37044137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes.
    Zhang X; Cui J; Zhang K; Wu J; Lee Y
    J Chem Inf Model; 2019 Nov; 59(11):4636-4644. PubMed ID: 31661958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph Transformer with Convolution Parallel Networks for Predicting Single and Binary Component Adsorption Performance of Metal-Organic Frameworks.
    Zhao Y; Zhao Y; Gong Q; Wang Z
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49527-49537. PubMed ID: 37831093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.
    Wu D; Guo X; Sun H; Navrotsky A
    J Phys Chem Lett; 2015 Jul; 6(13):2439-43. PubMed ID: 26266715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.