These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30822016)

  • 1. Quasichiral Interactions between Quantum Emitters at the Nanoscale.
    Downing CA; Carreño JCL; Laussy FP; Del Valle E; Fernández-Domínguez AI
    Phys Rev Lett; 2019 Feb; 122(5):057401. PubMed ID: 30822016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strongly Correlated Photon Transport in Waveguide Quantum Electrodynamics with Weakly Coupled Emitters.
    Mahmoodian S; Čepulkovskis M; Das S; Lodahl P; Hammerer K; Sørensen AS
    Phys Rev Lett; 2018 Oct; 121(14):143601. PubMed ID: 30339447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Purcell enhancement with nanoscale non-reciprocal photon transmission in chiral gap-plasmon-emitter systems.
    Shan L; Zhang F; Ren J; Zhang Q; Gong Q; Gu Y
    Opt Express; 2020 Nov; 28(23):33890-33899. PubMed ID: 33182868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring the superradiant and subradiant nature of two coherently coupled quantum emitters.
    Trebbia JB; Deplano Q; Tamarat P; Lounis B
    Nat Commun; 2022 May; 13(1):2962. PubMed ID: 35618729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metasurface-Enabled Generation of Circularly Polarized Single Photons.
    Kan Y; Andersen SKH; Ding F; Kumar S; Zhao C; Bozhevolnyi SI
    Adv Mater; 2020 Apr; 32(16):e1907832. PubMed ID: 32115783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission.
    Hu H; Chen W; Han X; Wang K; Lu P
    Nanoscale; 2022 Feb; 14(6):2287-2295. PubMed ID: 35081195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional energy transport in strongly coupled chiral quantum emitter plasmonic nanostructures.
    Gettapola K; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34425568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of strong coupling between quantum emitters and propagating surface plasmons.
    González-Tudela A; Huidobro PA; Martín-Moreno L; Tejedor C; García-Vidal FJ
    Phys Rev Lett; 2013 Mar; 110(12):126801. PubMed ID: 25166831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional quantum optics in topological waveguide QED.
    Bello M; Platero G; Cirac JI; González-Tudela A
    Sci Adv; 2019 Jul; 5(7):eaaw0297. PubMed ID: 31360765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of quantum dots coupled to plasmons and optical cavities.
    Westmoreland DE; McClelland KP; Perez KA; Schwabacher JC; Zhang Z; Weiss EA
    J Chem Phys; 2019 Dec; 151(21):210901. PubMed ID: 31822081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters.
    Grange T; Hornecker G; Hunger D; Poizat JP; Gérard JM; Senellart P; Auffèves A
    Phys Rev Lett; 2015 May; 114(19):193601. PubMed ID: 26024171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fiber ring resonator with a nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling.
    Schneeweiss P; Zeiger S; Hoinkes T; Rauschenbeutel A; Volz J
    Opt Lett; 2017 Jan; 42(1):85-88. PubMed ID: 28059184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.
    Rui G; Chen W; Abeysinghe DC; Nelson RL; Zhan Q
    Opt Express; 2012 Aug; 20(17):19297-304. PubMed ID: 23038571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dressed states of a quantum emitter strongly coupled to a metal nanoparticle.
    Varguet H; Rousseaux B; Dzsotjan D; Jauslin HR; Guérin S; Colas des Francs G
    Opt Lett; 2016 Oct; 41(19):4480-4483. PubMed ID: 27749860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonics in atomically thin materials.
    García de Abajo FJ; Manjavacas A
    Faraday Discuss; 2015; 178():87-107. PubMed ID: 25774774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips.
    D'Agostino S; Alpeggiani F; Andreani LC
    Opt Express; 2013 Nov; 21(23):27602-10. PubMed ID: 24514278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter.
    Cheng MT; Ma X; Fan JW; Xu J; Zhu C
    Opt Lett; 2017 Aug; 42(15):2914-2917. PubMed ID: 28957206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmons: untangling the classical, experimental, and quantum mechanical definitions.
    Gieseking RLM
    Mater Horiz; 2022 Jan; 9(1):25-42. PubMed ID: 34608479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.