BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30822094)

  • 1. Experimental Observation of Superscattering.
    Qian C; Lin X; Yang Y; Xiong X; Wang H; Li E; Kaminer I; Zhang B; Chen H
    Phys Rev Lett; 2019 Feb; 122(6):063901. PubMed ID: 30822094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superscattering of water waves.
    Qin Z; Qian C; Shen L; Wang X; Kaminer I; Chen H; Wang H
    Natl Sci Rev; 2023 Jul; 10(7):nwac255. PubMed ID: 37266547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Fano-like interference to superscattering with a single metallic nanodisk.
    Wan W; Zheng W; Chen Y; Liu Z
    Nanoscale; 2014 Aug; 6(15):9093-102. PubMed ID: 24975582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superscattering of electromagnetic waves from subwavelength dielectric structures.
    Beneck RJ; Kang L; Jenkins RP; Campbell SD; Werner DH
    Opt Express; 2024 May; 32(11):19410-19423. PubMed ID: 38859076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering multimode resonances for tunable multifrequency superscattering.
    Jie Liu Y; Yuan Dong H; Dong ZG; Wang J
    Opt Express; 2022 Jan; 30(2):1219-1227. PubMed ID: 35209286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superscattering of light from subwavelength nanostructures.
    Ruan Z; Fan S
    Phys Rev Lett; 2010 Jul; 105(1):013901. PubMed ID: 20867445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring localized ENZ resonances and their role in superscattering, wideband invisibility, and tunable scattering.
    Serebryannikov AE; Ozbay E
    Sci Rep; 2024 Jan; 14(1):1580. PubMed ID: 38238347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent effect in superscattering.
    Liu Y; Zhang X
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):2071-2075. PubMed ID: 27828114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking the fundamental scattering limit with gain metasurfaces.
    Qian C; Yang Y; Hua Y; Wang C; Lin X; Cai T; Ye D; Li E; Kaminer I; Chen H
    Nat Commun; 2022 Jul; 13(1):4383. PubMed ID: 35902584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superscattering emerging from the physics of bound states in the continuum.
    Canós Valero A; Shamkhi HK; Kupriianov AS; Weiss T; Pavlov AA; Redka D; Bobrovs V; Kivshar Y; Shalin AS
    Nat Commun; 2023 Aug; 14(1):4689. PubMed ID: 37542069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invisible Gateway by Superscattering Effect of Metamaterials.
    Ye KP; Pei WJ; Sa ZH; Chen H; Wu RX
    Phys Rev Lett; 2021 Jun; 126(22):227403. PubMed ID: 34152173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable deep-subwavelength superscattering using graphene monolayers.
    Li RJ; Lin X; Lin SS; Liu X; Chen HS
    Opt Lett; 2015 Apr; 40(8):1651-4. PubMed ID: 25872039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superscattering from cylindrical hyperbolic metamaterials in the visible region.
    Kumar R; Kajikawa K
    Opt Express; 2020 Jan; 28(2):1507-1517. PubMed ID: 32121859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning-enabled inverse engineering of multi-wavelength invisibility-to-superscattering switching with phase-change materials.
    Luo J; Li X; Zhang X; Guo J; Liu W; Lai Y; Zhan Y; Huang M
    Opt Express; 2021 Mar; 29(7):10527-10537. PubMed ID: 33820186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.
    Li R; Lin X; Lin S; Liu X; Chen H
    Nanotechnology; 2015 Dec; 26(50):505201. PubMed ID: 26580845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon dispersion engineering for optimizing scattering, emission, and radiation properties on a graphene spherical device.
    Gingins M; Cuevas M; Depine R
    Appl Opt; 2020 May; 59(14):4254-4262. PubMed ID: 32400398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omnidirectional Photodetectors Based on Spatial Resonance Asymmetric Facade via a 3D Self-Standing Strategy.
    Pan Q; Su M; Zhang Z; Chen B; Huang Z; Hu X; Cai Z; Song Y
    Adv Mater; 2020 Apr; 32(16):e1907280. PubMed ID: 32108392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating photoinduced voltage in metasurface with circularly polarized light.
    Bai Q
    Opt Express; 2015 Feb; 23(4):5348-56. PubMed ID: 25836566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayered plasmonic covers for comblike scattering response and optical tagging.
    Monticone F; Argyropoulos C; Alù A
    Phys Rev Lett; 2013 Mar; 110(11):113901. PubMed ID: 25166536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.