BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30822148)

  • 1. Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries.
    Kallhovd S; Sundnes J; Wall ST
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):664-675. PubMed ID: 30822148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element model of myocardial infarction using a composite material approach.
    Haddad SMH; Samani A
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):33-46. PubMed ID: 29252005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the reference domain influence in personalised models of cardiac mechanics : Effect of unloaded geometry on cardiac biomechanics.
    Hadjicharalambous M; Stoeck CT; Weisskopf M; Cesarovic N; Ioannou E; Vavourakis V; Nordsletten DA
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1579-1597. PubMed ID: 34047891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties.
    Fan L; Yao J; Yang C; Tang D; Xu D
    J Biomech Eng; 2015 Aug; 137(8):081005. PubMed ID: 25994130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left Ventricular Diastolic and Systolic Material Property Estimation from Image Data: LV Mechanics Challenge.
    Krishnamurthy A; Villongco C; Beck A; Omens J; McCulloch A
    Stat Atlases Comput Models Heart; 2015 Jan; 8896():63-73. PubMed ID: 25729778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-resolution computational model of the deforming human heart.
    Gurev V; Pathmanathan P; Fattebert JL; Wen HF; Magerlein J; Gray RA; Richards DF; Rice JJ
    Biomech Model Mechanobiol; 2015 Aug; 14(4):829-49. PubMed ID: 25567753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle.
    Mann CK; Lee LC; Campbell KS; Wenk JF
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing cardiac material parameters with a genetic algorithm.
    Nair AU; Taggart DG; Vetter FJ
    J Biomech; 2007; 40(7):1646-50. PubMed ID: 17056049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart.
    Nikou A; Dorsey SM; McGarvey JR; Gorman JH; Burdick JA; Pilla JJ; Gorman RC; Wenk JF
    Comput Methods Biomech Biomed Engin; 2016 Dec; 19(16):1714-1720. PubMed ID: 27153460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI-based finite-element analysis of left ventricular aneurysm.
    Walker JC; Ratcliffe MB; Zhang P; Wallace AW; Fata B; Hsu EW; Saloner D; Guccione JM
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H692-700. PubMed ID: 15778283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material stiffness parameters as potential predictors of presence of left ventricle myocardial infarction: 3D echo-based computational modeling study.
    Fan L; Yao J; Yang C; Wu Z; Xu D; Tang D
    Biomed Eng Online; 2016 Apr; 15():34. PubMed ID: 27044441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperelastic description of elastomechanic properties of the heart: a new material law and its application.
    Häfner J; Sachse FB; Sansour C; Seemann G; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():770-3. PubMed ID: 12465299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations.
    Fan L; Yao J; Yang C; Xu D; Tang D
    Mol Cell Biomech; 2016; 13(1):33-55. PubMed ID: 29399004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventricular mechanics in diastole: material parameter sensitivity.
    Stevens C; Remme E; LeGrice I; Hunter P
    J Biomech; 2003 May; 36(5):737-48. PubMed ID: 12695004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain measurement in the left ventricle during systole with deformable image registration.
    Phatak NS; Maas SA; Veress AI; Pack NA; Di Bella EV; Weiss JA
    Med Image Anal; 2009 Apr; 13(2):354-61. PubMed ID: 18948056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.