These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3082219)

  • 21. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
    Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G
    J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acid-base regulation of ion transport in rabbit ileum in vitro.
    DeSoignie R; Sellin JH
    Gastroenterology; 1990 Jul; 99(1):132-41. PubMed ID: 2111782
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of pH and HCO3 in brain and CSF of the developing mammalian central nervous system.
    Johanson CE; Allen J; Withrow CD
    Brain Res; 1988 Feb; 466(2):255-64. PubMed ID: 3129145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of proton availability on intracapillary CO2-HCO3(-)-H+ reactions in isolated rat lungs.
    Heming TA; Bidani A
    J Appl Physiol (1985); 1992 Jun; 72(6):2140-8. PubMed ID: 1321108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does the administration of carbicarb lead acutely to back-titration of non-bicarbonate buffers?
    Kamel KS
    Clin Nephrol; 1996 Aug; 46(2):112-6. PubMed ID: 8869788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac effects of carbon dioxide-consuming and carbon dioxide-generating buffers during cardiopulmonary resuscitation.
    Gazmuri RJ; von Planta M; Weil MH; Rackow EC
    J Am Coll Cardiol; 1990 Feb; 15(2):482-90. PubMed ID: 2105347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regional brain energy metabolism after complete versus incomplete ischemia in the rat in the absence of severe lactic acidosis.
    Yoshida S; Busto R; Martinez E; Scheinberg P; Ginsberg MD
    J Cereb Blood Flow Metab; 1985 Dec; 5(4):490-501. PubMed ID: 4055923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of extracellular pH, PCO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body.
    Buckler KJ; Vaughan-Jones RD; Peers C; Lagadic-Gossmann D; Nye PC
    J Physiol; 1991 Dec; 444():703-21. PubMed ID: 1822566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of intracellular pH in the spontaneously hypertensive rat. Role of bicarbonate-dependent transporters.
    Redon J; Batlle D
    Hypertension; 1994 Apr; 23(4):503-12. PubMed ID: 8144220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interstitial PCO2 and pH, and their role as chemostimulants in the isolated respiratory network of neonatal rats.
    Voipio J; Ballanyi K
    J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):527-42. PubMed ID: 9080379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An investigation of chloride-bicarbonate exchange in the sheep cardiac Purkinje fibre.
    Vaughan-Jones RD
    J Physiol; 1986 Oct; 379():377-406. PubMed ID: 3559998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of sodium bicarbonate with dichloroacetate treatment of hyperlactatemia and lactic acidosis in the ischemic rat.
    Dimlich RV; Biros MH; Widman DW; Kaplan J
    Resuscitation; 1988 Jan; 16(1):13-30. PubMed ID: 2831600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
    Mizumori M; Meyerowitz J; Takeuchi T; Lim S; Lee P; Supuran CT; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Physiol; 2006 Jun; 573(Pt 3):827-42. PubMed ID: 16556652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of extracellular pH, CO2, and HCO3- on ketogenesis in perfused rat liver.
    Wu GY; Gunasekara A; Brunengraber H; Marliss EB
    Am J Physiol; 1991 Aug; 261(2 Pt 1):E221-6. PubMed ID: 1908188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acid homeostasis following partial ischemia in neonatal brain measured in vivo by 31P and 1H nuclear magnetic resonance spectroscopy.
    Corbett RJ; Laptook AR
    J Neurochem; 1990 Apr; 54(4):1208-17. PubMed ID: 2313286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats.
    Smith ML; von Hanwehr R; Siesjö BK
    J Cereb Blood Flow Metab; 1986 Oct; 6(5):574-83. PubMed ID: 3760041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology.
    Rehncrona S; Rosén I; Siesjö BK
    J Cereb Blood Flow Metab; 1981; 1(3):297-311. PubMed ID: 7328145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance of the extracellular bicarbonate buffer system to anaerobic glycolysis in hypoxic muscle.
    Gesser H
    Acta Physiol Scand; 1976 Sep; 98(1):110-5. PubMed ID: 9777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proximal HCO3- reabsorption and the determinants of tubular and capillary PCO2 in the rat.
    Maddox DA; Atherton LJ; Deen WM; Gennari FJ
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F73-81. PubMed ID: 6430105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.