These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30822382)

  • 1. Assessing the Accuracy of Different Solvation Models To Describe Protein Adsorption.
    Ortega M; Vilhena JG; Rubio-Pereda P; Serena PA; Pérez R
    J Chem Theory Comput; 2019 Apr; 15(4):2548-2560. PubMed ID: 30822382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein adsorption on the hydrophilic surface of a glassy polymer: a computer simulation study.
    Raffaini G; Ganazzoli F
    Phys Chem Chem Phys; 2006 Jun; 8(23):2765-72. PubMed ID: 16763710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Albumin (BSA) Adsorption over Graphene in Aqueous Environment: Influence of Orientation, Adsorption Protocol, and Solvent Treatment.
    Vilhena JG; Rubio-Pereda P; Vellosillo P; Serena PA; Pérez R
    Langmuir; 2016 Feb; 32(7):1742-55. PubMed ID: 26799950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption orientations and immunological recognition of antibodies on graphene.
    Vilhena JG; Dumitru AC; Herruzo ET; Mendieta-Moreno JI; Garcia R; Serena PA; Pérez R
    Nanoscale; 2016 Jul; 8(27):13463-75. PubMed ID: 27352029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of free and forced BSA adsorption on a hydrophobic graphite surface.
    Mücksch C; Urbassek HM
    Langmuir; 2011 Nov; 27(21):12938-43. PubMed ID: 21877733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces.
    Köhler S; Schmid F; Settanni G
    Langmuir; 2015 Dec; 31(48):13180-90. PubMed ID: 26569042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary structure bias in generalized Born solvent models: comparison of conformational ensembles and free energy of solvent polarization from explicit and implicit solvation.
    Roe DR; Okur A; Wickstrom L; Hornak V; Simmerling C
    J Phys Chem B; 2007 Feb; 111(7):1846-57. PubMed ID: 17256983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite.
    Raffaini G; Ganazzoli F
    Langmuir; 2010 Apr; 26(8):5679-89. PubMed ID: 20041676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface.
    Penna MJ; Mijajlovic M; Tamerler C; Biggs MJ
    Soft Matter; 2015 Jul; 11(26):5192-203. PubMed ID: 25920450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of β2-microglobulin interaction with hydrophobic surfaces.
    Dongmo Foumthuim CJ; Corazza A; Esposito G; Fogolari F
    Mol Biosyst; 2017 Nov; 13(12):2625-2637. PubMed ID: 29051937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    J Mol Graph Model; 2015 Sep; 61():175-85. PubMed ID: 26275931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling hydrophobicity, dispersion, and electrostatics in continuum solvent models.
    Dzubiella J; Swanson JM; McCammon JA
    Phys Rev Lett; 2006 Mar; 96(8):087802. PubMed ID: 16606226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance.
    Utesch T; Daminelli G; Mroginski MA
    Langmuir; 2011 Nov; 27(21):13144-53. PubMed ID: 21958113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water.
    Stauffer D; Dragneva N; Floriano WB; Mawhinney RC; Fanchini G; French S; Rubel O
    J Chem Phys; 2014 Jul; 141(4):044705. PubMed ID: 25084935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein adsorption on biomaterial and nanomaterial surfaces: a molecular modeling approach to study non-covalent interactions.
    Raffaini G; Ganazzoli F
    J Appl Biomater Biomech; 2010; 8(3):135-45. PubMed ID: 21337304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implicit solvent methods for free energy estimation.
    Decherchi S; Masetti M; Vyalov I; Rocchia W
    Eur J Med Chem; 2015 Feb; 91():27-42. PubMed ID: 25193298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.