BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30822408)

  • 1. Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice.
    Thapa D; Xie B; Zhang M; Stoner MW; Manning JR; Huckestein BR; Edmunds LR; Mullett SJ; McTiernan CF; Wendell SG; Jurczak MJ; Scott I
    J Mol Cell Cardiol; 2019 Apr; 129():174-178. PubMed ID: 30822408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency.
    Altamimi TR; Gao S; Karwi QG; Fukushima A; Rawat S; Wagg CS; Zhang L; Lopaschuk GD
    Metabolism; 2019 Sep; 98():37-48. PubMed ID: 31202835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance.
    Gao S; McMillan RP; Zhu Q; Lopaschuk GD; Hulver MW; Butler AA
    Mol Metab; 2015 Apr; 4(4):310-24. PubMed ID: 25830094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway.
    Thapa D; Stoner MW; Zhang M; Xie B; Manning JR; Guimaraes D; Shiva S; Jurczak MJ; Scott I
    Redox Biol; 2018 Sep; 18():25-32. PubMed ID: 29909017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adropin reduces blood glucose levels in mice by limiting hepatic glucose production.
    Thapa D; Xie B; Manning JR; Zhang M; Stoner MW; Huckestein BR; Edmunds LR; Zhang X; Dedousis NL; O'Doherty RM; Jurczak MJ; Scott I
    Physiol Rep; 2019 Apr; 7(8):e14043. PubMed ID: 31004398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of substrate oxidation preferences in muscle by the peptide hormone adropin.
    Gao S; McMillan RP; Jacas J; Zhu Q; Li X; Kumar GK; Casals N; Hegardt FG; Robbins PD; Lopaschuk GD; Hulver MW; Butler AA
    Diabetes; 2014 Oct; 63(10):3242-52. PubMed ID: 24848071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice.
    Schafer C; Young ZT; Makarewich CA; Elnwasany A; Kinter C; Kinter M; Szweda LI
    J Biol Chem; 2018 May; 293(18):6915-6924. PubMed ID: 29540486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diet-induced obese mice are resistant to improvements in cardiac function resulting from short-term adropin treatment.
    Thapa D; Xie B; Mushala BAS; Zhang M; Manning JR; Bugga P; Stoner MW; Jurczak MJ; Scott I
    Curr Res Physiol; 2022; 5():55-62. PubMed ID: 35128468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity.
    Karwi QG; Zhang L; Altamimi TR; Wagg CS; Patel V; Uddin GM; Joerg AR; Padwal RS; Johnstone DE; Sharma A; Oudit GY; Lopaschuk GD
    Diabetes Obes Metab; 2019 Aug; 21(8):1944-1955. PubMed ID: 31050157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity.
    Gao S; Ghoshal S; Zhang L; Stevens JR; McCommis KS; Finck BN; Lopaschuk GD; Butler AA
    J Biol Chem; 2019 Sep; 294(36):13366-13377. PubMed ID: 31324719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation.
    Pettersen IKN; Tusubira D; Ashrafi H; Dyrstad SE; Hansen L; Liu XZ; Nilsson LIH; Løvsletten NG; Berge K; Wergedahl H; Bjørndal B; Fluge Ø; Bruland O; Rustan AC; Halberg N; Røsland GV; Berge RK; Tronstad KJ
    Mitochondrion; 2019 Nov; 49():97-110. PubMed ID: 31351920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous H
    Sun Y; Tian Z; Liu N; Zhang L; Gao Z; Sun X; Yu M; Wu J; Yang F; Zhao Y; Ren H; Chen H; Zhao D; Wang Y; Dong S; Xu C; Lu F; Zhang W
    J Mol Med (Berl); 2018 Apr; 96(3-4):281-299. PubMed ID: 29349500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction.
    Fillmore N; Levasseur JL; Fukushima A; Wagg CS; Wang W; Dyck JRB; Lopaschuk GD
    Mol Med; 2018 Mar; 24(1):3. PubMed ID: 30134787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling.
    Manning JR; Thapa D; Zhang M; Stoner MW; Traba J; Corey C; Shiva S; Sack MN; Scott I
    Biochem J; 2019 Jun; 476(12):1713-1724. PubMed ID: 31138772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: An important role for skeletal muscle pyruvate dehydrogenase kinase 4.
    Chokkalingam K; Jewell K; Norton L; Littlewood J; van Loon LJ; Mansell P; Macdonald IA; Tsintzas K
    J Clin Endocrinol Metab; 2007 Jan; 92(1):284-92. PubMed ID: 17062764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between maternal and postnatal high fat diet leads to a greater risk of myocardial dysfunction in offspring via enhanced lipotoxicity, IRS-1 serine phosphorylation and mitochondrial defects.
    Turdi S; Ge W; Hu N; Bradley KM; Wang X; Ren J
    J Mol Cell Cardiol; 2013 Feb; 55():117-29. PubMed ID: 23266593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiomyocyte-specific deletion of GCN5L1 reduces lysine acetylation and attenuates diastolic dysfunction in aged mice by improving cardiac fatty acid oxidation.
    Stewart JE; Crawford JM; Mullen WE; Jacques A; Stoner MW; Scott I; Thapa D
    Biochem J; 2024 Mar; 481(6):423-436. PubMed ID: 38390938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.
    Song X; Liu J; Kuang F; Chen X; Zeh HJ; Kang R; Kroemer G; Xie Y; Tang D
    Cell Rep; 2021 Feb; 34(8):108767. PubMed ID: 33626342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.