BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30822413)

  • 1. Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
    Jo KS; Kim JH; Ryu KS; Kang JS; Wang CY; Lee YS; Seo MD; Lee YH; Won HS
    J Mol Biol; 2019 Mar; 431(7):1468-1480. PubMed ID: 30822413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Effects of Elongation Factor Ts and Trigger Factor on the Unfolding and Aggregation of Elongation Factor Tu Induced by the Prokaryotic Molecular Chaperone Hsp33.
    Keum M; Ito D; Kim MS; Lin Y; Yoon KH; Kim J; Lee SH; Kim JH; Yu W; Lee YH; Won HS
    Biology (Basel); 2021 Nov; 10(11):. PubMed ID: 34827164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones.
    Bruel N; Castanié-Cornet MP; Cirinesi AM; Koningstein G; Georgopoulos C; Luirink J; Genevaux P
    J Biol Chem; 2012 Dec; 287(53):44435-46. PubMed ID: 23148222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae.
    Wholey WY; Jakob U
    Mol Microbiol; 2012 Mar; 83(5):981-91. PubMed ID: 22296329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
    Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U
    J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.
    Kim SJ; Jeong DG; Chi SW; Lee JS; Ryu SE
    Nat Struct Biol; 2001 May; 8(5):459-66. PubMed ID: 11323724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-regulated molecular chaperones.
    Graf PC; Jakob U
    Cell Mol Life Sci; 2002 Oct; 59(10):1624-31. PubMed ID: 12475172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
    Cremers CM; Reichmann D; Hausmann J; Ilbert M; Jakob U
    J Biol Chem; 2010 Apr; 285(15):11243-51. PubMed ID: 20139072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.
    Graumann J; Lilie H; Tang X; Tucker KA; Hoffmann JH; Vijayalakshmi J; Saper M; Bardwell JC; Jakob U
    Structure; 2001 May; 9(5):377-87. PubMed ID: 11377198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms.
    Segal N; Shapira M
    Plant J; 2015 Jun; 82(5):850-60. PubMed ID: 25892083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a redox-regulated chaperone network.
    Hoffmann JH; Linke K; Graf PC; Lilie H; Jakob U
    EMBO J; 2004 Jan; 23(1):160-8. PubMed ID: 14685279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33.
    Raman B; Siva Kumar LV; Ramakrishna T; Mohan Rao C
    FEBS Lett; 2001 Jan; 489(1):19-24. PubMed ID: 11231006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold.
    Won HS; Low LY; Guzman RD; Martinez-Yamout M; Jakob U; Dyson HJ
    J Mol Biol; 2004 Aug; 341(4):893-9. PubMed ID: 15328602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation.
    Krewing M; Stepanek JJ; Cremers C; Lackmann JW; Schubert B; Müller A; Awakowicz P; Leichert LIO; Jakob U; Bandow JE
    J R Soc Interface; 2019 Jun; 16(155):20180966. PubMed ID: 31213177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J; Linke K; Jatzek A; Jakob U
    Mol Cell; 2005 Feb; 17(3):381-92. PubMed ID: 15694339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
    Vijayalakshmi J; Mukhergee MK; Graumann J; Jakob U; Saper MA
    Structure; 2001 May; 9(5):367-75. PubMed ID: 11377197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism.
    Janda I; Devedjiev Y; Derewenda U; Dauter Z; Bielnicki J; Cooper DR; Graf PC; Joachimiak A; Jakob U; Derewenda ZS
    Structure; 2004 Oct; 12(10):1901-7. PubMed ID: 15458638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone.
    Barbirz S; Jakob U; Glocker MO
    J Biol Chem; 2000 Jun; 275(25):18759-66. PubMed ID: 10764757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.