These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30822413)

  • 21. Chaperone activity with a redox switch.
    Jakob U; Muse W; Eser M; Bardwell JC
    Cell; 1999 Feb; 96(3):341-52. PubMed ID: 10025400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligomeric Hsp33 with enhanced chaperone activity: gel filtration, cross-linking, and small angle x-ray scattering (SAXS) analysis.
    Akhtar MW; Srinivas V; Raman B; Ramakrishna T; Inobe T; Maki K; Arai M; Kuwajima K; Rao ChM
    J Biol Chem; 2004 Dec; 279(53):55760-9. PubMed ID: 15494414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process.
    Lee YS; Lee J; Ryu KS; Lee Y; Jung TG; Jang JH; Sim DW; Kim EH; Seo MD; Lee KW; Won HS
    J Mol Biol; 2015 Dec; 427(24):3850-61. PubMed ID: 26453802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CnoX Is a Chaperedoxin: A Holdase that Protects Its Substrates from Irreversible Oxidation.
    Goemans CV; Vertommen D; Agrebi R; Collet JF
    Mol Cell; 2018 May; 70(4):614-627.e7. PubMed ID: 29754824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry.
    Fassler R; Edinger N; Rimon O; Reichmann D
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cold atmospheric pressure plasma-generated species superoxide, singlet oxygen and atomic oxygen activate the molecular chaperone Hsp33.
    Dirks T; Krewing M; Vogel K; Bandow JE
    J R Soc Interface; 2023 Oct; 20(207):20230300. PubMed ID: 37876273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Verification of the interdomain contact site in the inactive monomer, and the domain-swapped fold in the active dimer of Hsp33 in solution.
    Lee YS; Ryu KS; Kim SJ; Ko HS; Sim DW; Jeon YH; Kim EH; Choi WS; Won HS
    FEBS Lett; 2012 Feb; 586(4):411-5. PubMed ID: 22265690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu.
    Rao D; Momcilovic I; Kobayashi S; Callegari E; Ristic Z
    Eur J Biochem; 2004 Sep; 271(18):3684-92. PubMed ID: 15355346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond transcription--new mechanisms for the regulation of molecular chaperones.
    Winter J; Jakob U
    Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redox switch of hsp33 has a novel zinc-binding motif.
    Jakob U; Eser M; Bardwell JC
    J Biol Chem; 2000 Dec; 275(49):38302-10. PubMed ID: 10976105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The redox-switch domain of Hsp33 functions as dual stress sensor.
    Ilbert M; Horst J; Ahrens S; Winter J; Graf PC; Lilie H; Jakob U
    Nat Struct Mol Biol; 2007 Jun; 14(6):556-63. PubMed ID: 17515905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.
    Rimon O; Suss O; Goldenberg M; Fassler R; Yogev O; Amartely H; Propper G; Friedler A; Reichmann D
    Antioxid Redox Signal; 2017 Nov; 27(15):1252-1267. PubMed ID: 28394178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic analysis of a molecular chaperone binding to unfolded protein substrates.
    Xu Y; Schmitt S; Tang L; Jakob U; Fitzgerald MC
    Biochemistry; 2010 Feb; 49(6):1346-53. PubMed ID: 20073505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The unfolding story of the Escherichia coli Hsp70 DnaK: is DnaK a holdase or an unfoldase?
    Slepenkov SV; Witt SN
    Mol Microbiol; 2002 Sep; 45(5):1197-206. PubMed ID: 12207689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Order out of disorder: working cycle of an intrinsically unfolded chaperone.
    Reichmann D; Xu Y; Cremers CM; Ilbert M; Mittelman R; Fitzgerald MC; Jakob U
    Cell; 2012 Mar; 148(5):947-57. PubMed ID: 22385960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Specificity of elongation factor EF-TU for hydrophobic peptides.
    Malki A; Caldas T; Parmeggiani A; Kohiyama M; Richarme G
    Biochem Biophys Res Commun; 2002 Aug; 296(3):749-54. PubMed ID: 12176046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress.
    Kang HJ; Heo DH; Choi SW; Kim KN; Shim J; Kim CW; Sung HC; Yun CW
    Biochem Biophys Res Commun; 2007 Jul; 358(3):743-50. PubMed ID: 17512907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly.
    Evans ML; Schmidt JC; Ilbert M; Doyle SM; Quan S; Bardwell JC; Jakob U; Wickner S; Chapman MR
    Prion; 2011; 5(4):323-34. PubMed ID: 22156728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5.
    Lee DH; Kim D; Kim ST; Jeong S; Kim JL; Shim SM; Heo AJ; Song X; Guo ZS; Bartlett DL; Oh SC; Lee J; Saito Y; Kim BY; Kwon YT; Lee YJ
    Autophagy; 2018; 14(11):1870-1885. PubMed ID: 29976090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.