These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 30822767)
1. Novel definition of the synergistic effect between carbon nanotubes and carbon black for electrical conductivity. Qu M; Nilsson F; Schubert DW Nanotechnology; 2019 Jun; 30(24):245703. PubMed ID: 30822767 [TBL] [Abstract][Full Text] [Related]
2. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. Ma PC; Liu MY; Zhang H; Wang SQ; Wang R; Wang K; Wong YK; Tang BZ; Hong SH; Paik KW; Kim JK ACS Appl Mater Interfaces; 2009 May; 1(5):1090-6. PubMed ID: 20355896 [TBL] [Abstract][Full Text] [Related]
3. Effect of Filler Synergy and Cast Film Extrusion Parameters on Extrudability and Direction-Dependent Conductivity of PVDF/Carbon Nanotube/Carbon Black Composites. Krause B; Kunz K; Kretzschmar B; Kühnert I; Pötschke P Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33333875 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and electrical conductivity of poly(methyl methacrylate) (PMMA)/carbon black (CB) composites: comparison between an ordered carbon black nanowire-like segregated structure and a randomly dispersed carbon black nanostructure. Ou R; Gupta S; Parker CA; Gerhardt RA J Phys Chem B; 2006 Nov; 110(45):22365-73. PubMed ID: 17091976 [TBL] [Abstract][Full Text] [Related]
5. Thermal Conductivity and Electrical Resistivity of Melt-Mixed Polypropylene Composites Containing Mixtures of Carbon-Based Fillers. Krause B; Rzeczkowski P; Pötschke P Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234343 [TBL] [Abstract][Full Text] [Related]
6. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity. Ke K; Pötschke P; Wiegand N; Krause B; Voit B ACS Appl Mater Interfaces; 2016 Jun; 8(22):14190-9. PubMed ID: 27171017 [TBL] [Abstract][Full Text] [Related]
7. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. Choi K; Yu C PLoS One; 2012; 7(9):e44977. PubMed ID: 23024778 [TBL] [Abstract][Full Text] [Related]
8. Direction Dependent Electrical Conductivity of Polymer/Carbon Filler Composites. Kunz K; Krause B; Kretzschmar B; Juhasz L; Kobsch O; Jenschke W; Ullrich M; Pötschke P Polymers (Basel); 2019 Apr; 11(4):. PubMed ID: 30960575 [TBL] [Abstract][Full Text] [Related]
9. Polymer Composite Containing Carbon Nanotubes and their Applications. Park SH; Bae J Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788 [TBL] [Abstract][Full Text] [Related]
10. Effect of Hybrid Carbon Fillers on the Electrical and Morphological Properties of Polystyrene Nanocomposites in Microinjection Molding. Zhou S; Hrymak AN; Kamal MR Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274379 [TBL] [Abstract][Full Text] [Related]
12. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Liu H; Gao J; Huang W; Dai K; Zheng G; Liu C; Shen C; Yan X; Guo J; Guo Z Nanoscale; 2016 Jul; 8(26):12977-89. PubMed ID: 27304516 [TBL] [Abstract][Full Text] [Related]
13. Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications. Bleija M; Platnieks O; Macutkevič J; Starkova O; Gaidukovs S Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296860 [TBL] [Abstract][Full Text] [Related]
14. Synergy effect in hybrid nanocomposites based on carbon nanotubes and graphene nanoplatelets. Gbaguidi A; Namilae S; Kim D Nanotechnology; 2020 Apr; 31(25):255704. PubMed ID: 32168500 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Pressure Sensing Properties of Carbon Nanotubes and Carbon Black Polymer Composites. Yoo J; Kim DY; Kim H; Hur ON; Park SH Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161157 [TBL] [Abstract][Full Text] [Related]
16. Electrical and Thermal Conductivity of Epoxy-Carbon Filler Composites Processed by Calendaring. Caradonna A; Badini C; Padovano E; Pietroluongo M Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075928 [TBL] [Abstract][Full Text] [Related]
17. The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets. Perets Y; Aleksandrovych L; Melnychenko M; Lazarenko O; Vovchenko L; Matzui L Nanoscale Res Lett; 2017 Dec; 12(1):406. PubMed ID: 28618717 [TBL] [Abstract][Full Text] [Related]
18. Predictive Optimization of Electrical Conductivity of Polycarbonate Composites at Different Concentrations of Carbon Nanotubes: A Valorization of Conductive Nanocomposite Theoretical Models. Sidi Salah L; Ouslimani N; Chouai M; Danlée Y; Huynen I; Aksas H Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33808116 [TBL] [Abstract][Full Text] [Related]
19. Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites. Yu L; Park JS; Lim YS; Lee CS; Shin K; Moon HJ; Yang CM; Lee YS; Han JH Nanotechnology; 2013 Apr; 24(15):155604. PubMed ID: 23529153 [TBL] [Abstract][Full Text] [Related]
20. The electrical properties of epoxy resin composites filled with Cnts and carbon black. Bellucci S; Coderoni L; Micciulla F; Rinaldi G; Sacco I J Nanosci Nanotechnol; 2011 Oct; 11(10):9110-7. PubMed ID: 22400310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]