BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 30823373)

  • 21. App-Based Feedback for Rehabilitation Exercise Correction in Patients With Knee or Hip Osteoarthritis: Prospective Cohort Study.
    Biebl JT; Rykala M; Strobel M; Kaur Bollinger P; Ulm B; Kraft E; Huber S; Lorenz A
    J Med Internet Res; 2021 Jul; 23(7):e26658. PubMed ID: 34255677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Late group-based rehabilitation has no advantages compared with supervised home-exercises after total knee arthroplasty.
    Madsen M; Larsen K; Madsen IK; Søe H; Hansen TB
    Dan Med J; 2013 Apr; 60(4):A4607. PubMed ID: 23651717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Mar; 56(2):88-94. PubMed ID: 27782290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Internet-based outpatient telerehabilitation for patients following total knee arthroplasty: a randomized controlled trial.
    Russell TG; Buttrum P; Wootton R; Jull GA
    J Bone Joint Surg Am; 2011 Jan; 93(2):113-20. PubMed ID: 21248209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-Time Limb Motion Tracking with a Single IMU Sensor for Physical Therapy Exercises.
    Wei W; Kurita K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7152-7157. PubMed ID: 34892750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Upper Body and Lower Limbs Kinematics through an
    Cerfoglio S; Capodaglio P; Rossi P; Conforti I; D'Angeli V; Milani E; Galli M; Cimolin V
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Requirements for home-based upper extremity rehabilitation using wearable motion sensors for stroke patients: a user-centred approach.
    Langerak AJ; Regterschot GRH; Selles RW; Meskers CGM; Evers M; Ribbers GM; van Beijnum BJF; Bussmann JBJ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1392-1404. PubMed ID: 36905631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable Inertial Sensors for Exergames and Rehabilitation
    Bethi SR; RajKumar A; Vulpi F; Raghavan P; Kapila V
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4579-4582. PubMed ID: 33019013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Context-Aware Application to Increase Elderly Users Compliance with Physical Rehabilitation Exercises at Home via Animatronic Biofeedback.
    Gamecho B; Silva H; Guerreiro J; Gardeazabal L; Abascal J
    J Med Syst; 2015 Nov; 39(11):135. PubMed ID: 26319272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspectives on the Gamification of an Interactive Health Technology for Postoperative Rehabilitation of Pediatric Anterior Cruciate Ligament Reconstruction: User-Centered Design Approach.
    McClincy M; Seabol LG; Riffitts M; Ruh E; Novak NE; Wasilko R; Hamm ME; Bell KM
    JMIR Serious Games; 2021 Aug; 9(3):e27195. PubMed ID: 34448715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a Smartphone-Based mHealth Platform for Telerehabilitation.
    Lin WM; Lin BS; Lee IJ; Lee SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2682-2691. PubMed ID: 36063516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.
    Feldhege F; Mau-Moeller A; Lindner T; Hein A; Markschies A; Zettl UK; Bader R
    Sensors (Basel); 2015 May; 15(5):10734-52. PubMed ID: 25954954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formal Physical Therapy May Not Be Necessary After Unicompartmental Knee Arthroplasty: A Randomized Clinical Trial.
    Fillingham YA; Darrith B; Lonner JH; Culvern C; Crizer M; Della Valle CJ
    J Arthroplasty; 2018 Jul; 33(7S):S93-S99.e3. PubMed ID: 29555497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Strength Cond Res; 2017 Aug; 31(8):2303-2312. PubMed ID: 28731981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acceptability of a digital health intervention alongside physiotherapy to support patients following anterior cruciate ligament reconstruction.
    Dunphy E; Hamilton FL; Spasić I; Button K
    BMC Musculoskelet Disord; 2017 Nov; 18(1):471. PubMed ID: 29162071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using Non-Traditional Interfaces to Support Physical Therapy for Knee Strengthening.
    Torres A; López G; Guerrero LA
    J Med Syst; 2016 Sep; 40(9):194. PubMed ID: 27443340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Connecting patients and therapists remotely using technology is feasible and facilitates exercise adherence after stroke".
    Simpson DB; Bird ML; English C; Gall SL; Breslin M; Smith S; Schmidt M; Callisaya ML
    Top Stroke Rehabil; 2020 Mar; 27(2):93-102. PubMed ID: 31762412
    [No Abstract]   [Full Text] [Related]  

  • 40. Technology in Strength and Conditioning Tracking Lower-Limb Exercises With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield B
    J Strength Cond Res; 2017 Jun; 31(6):1726-1736. PubMed ID: 28538326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.