These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30823508)

  • 1. Classification of Lifting Techniques for Application of A Robotic Hip Exoskeleton.
    Chen B; Lanotte F; Grazi L; Vitiello N; Crea S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30823508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Lift Detection Strategy for a Hip Exoskeleton.
    Chen B; Grazi L; Lanotte F; Vitiello N; Crea S
    Front Neurorobot; 2018; 12():17. PubMed ID: 29706881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures.
    van Sluijs RM; Wehrli M; Brunner A; Lambercy O
    J Biomech; 2023 Mar; 149():111489. PubMed ID: 36806003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor variability during a repetitive lifting task is impaired by wearing a passive back-support exoskeleton.
    Rimmele P; Steinhilber B; Rieger MA; Luger T
    J Electromyogr Kinesiol; 2023 Feb; 68():102739. PubMed ID: 36566692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A passive back exoskeleton supporting symmetric and asymmetric lifting in stoop and squat posture reduces trunk and hip extensor muscle activity and adjusts body posture - A laboratory study.
    Luger T; Bär M; Seibt R; Rimmele P; Rieger MA; Steinhilber B
    Appl Ergon; 2021 Nov; 97():103530. PubMed ID: 34280658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model.
    Tröster M; Budde S; Maufroy C; Andersen MS; Rasmussen J; Schneider U; Bauernhansl T
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic effects of a passive lift assistive exoskeleton.
    Simon AA; Alemi MM; Asbeck AT
    J Biomech; 2021 May; 120():110317. PubMed ID: 33773297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Evaluation of a Lumbar Assisted Exoskeleton With Mixed Lifting Tasks by Various Postures.
    Li J; He Y; Sun J; Li F; Ye J; Chen G; Pang J; Wu X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2111-2119. PubMed ID: 37079423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models.
    Moya-Esteban A; Durandau G; van der Kooij H; Sartori M
    J Biomech; 2023 Aug; 157():111727. PubMed ID: 37499430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of a new passive back support exoskeleton.
    Koopman AS; Näf M; Baltrusch SJ; Kingma I; Rodriguez-Guerrero C; Babič J; de Looze MP; van Dieën JH
    J Biomech; 2020 May; 105():109795. PubMed ID: 32423541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can a Novel Light Weight Minimal Support Lifting Exoskeleton Modify Lifting Movement in People without Low Back Pain?
    Burjawi T; Chai R; Arrowsmith M; Pranata A
    Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Passive Back-Support Exoskeleton for Manual Materials Handling: Reduction of Low Back Loading and Metabolic Effort during Repetitive Lifting.
    Schmalz T; Colienne A; Bywater E; Fritzsche L; Gärtner C; Bellmann M; Reimer S; Ernst M
    IISE Trans Occup Ergon Hum Factors; 2022; 10(1):7-20. PubMed ID: 34763618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sEMG-Triggered Fast Assistance Strategy for a Pneumatic Back Support Exoskeleton.
    Heo U; Feng J; Kim SJ; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2175-2185. PubMed ID: 35925857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of a Back-Support Exoskeleton to Assist Carrying Activities.
    Lazzaroni M; Chini G; Draicchio F; Di Natali C; Caldwell DG; Ortiz J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking.
    Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H
    Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elongation of the surface of the spine during lifting and lowering, and implications for design of an upper body industrial exoskeleton.
    Huysamen K; Power V; O'Sullivan L
    Appl Ergon; 2018 Oct; 72():10-16. PubMed ID: 29885720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A passive exoskeleton reduces peak and mean EMG during symmetric and asymmetric lifting.
    Alemi MM; Geissinger J; Simon AA; Chang SE; Asbeck AT
    J Electromyogr Kinesiol; 2019 Aug; 47():25-34. PubMed ID: 31108346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a passive exoskeleton on kinematics, joint moments, and self-reported ratings during a lifting task.
    Arauz PG; Chavez G; Reinoso V; Ruiz P; Ortiz E; Cevallos C; Garcia G
    J Biomech; 2024 Jan; 162():111886. PubMed ID: 38043494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.