These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30823589)

  • 1. Design and Fabrication of a Wavelength-Selective Near-Infrared Metasurface Emitter for a Thermophotovoltaic System.
    Sakurai A; Matsuno Y
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30823589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management.
    Jiang X; Zhang Z; Ma H; Du T; Luo M; Liu D; Yang J
    Opt Express; 2022 May; 30(11):18250-18263. PubMed ID: 36221630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructures for Achieving Selective Properties of a Thermophotovoltaic Emitter.
    Šimonová L; Matějka M; Knápek A; Králík T; Pokorná Z; Mika F; Fořt T; Man O; Škarvada P; Otáhal A; Čudek P
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems.
    Ghanekar A; Tian Y; Zhang S; Cui Y; Zheng Y
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface.
    Yada K; Shimojo T; Okada H; Sakurai A
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting.
    Chang CC; Kort-Kamp WJM; Nogan J; Luk TS; Azad AK; Taylor AJ; Dalvit DAR; Sykora M; Chen HT
    Nano Lett; 2018 Dec; 18(12):7665-7673. PubMed ID: 30395478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter.
    Song J; Si M; Cheng Q; Luo Z
    Appl Opt; 2016 Feb; 55(6):1284-90. PubMed ID: 26906580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of a high-efficiency planar solar thermophotovoltaic system using a spectrally selective emitter.
    Bhatt R; Gupta M
    Opt Express; 2020 Jul; 28(15):21869-21890. PubMed ID: 32752460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications.
    Ghanekar A; Sun M; Zhang Z; Zheng Y
    J Therm Sci Eng Appl; 2018 Feb; 10(1):0110041-110044. PubMed ID: 29051797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Narrowband Silicon-Based Thermal Emitter with Excellent High-Temperature Stability Fabricated by Lithography-Free Methods.
    Hou G; Wang Q; Zhu Y; Lu Z; Xu J; Chen K
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten.
    Oh S; Cho JW; Jeong D; Lee K; Lee EJ; Shin S; Kim SK; Nam Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42724-42731. PubMed ID: 34459586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon-based spectrally selective emitters with good high-temperature stability on stepped metasurfaces.
    Zhu Y; Hou G; Wang Q; Zhu T; Sun T; Xu J; Chen K
    Nanoscale; 2022 Aug; 14(30):10816-10822. PubMed ID: 35822626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable wavelength selectivity of photonic metamaterials-based thermal devices.
    Tian Y; Ghanekar A; Liu X; Sheng J; Zheng Y
    J Photonics Energy; 2019 Jul; 9(3):. PubMed ID: 34084268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design.
    Matsumoto T; Tomita M
    Opt Express; 2010 Jun; 18 Suppl 2():A192-200. PubMed ID: 20588588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a polarization-insensitive thermophotovoltaic emitter with a binary grating.
    Nguyen-Huu N; Chen YB; Lo YL
    Opt Express; 2012 Mar; 20(6):5882-90. PubMed ID: 22418465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.