These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 30823589)
21. Long-wavelength infrared selective emitter for thermal infrared camouflage under a hot environment. Zhang J; Wen Z; Zhou Z; Zhou D; Qiu Q; Ge J; Zeng Y; Sun Y; Zhou L; Dai N; Chu J; Hao J Opt Express; 2022 Jun; 30(13):24132-24144. PubMed ID: 36225080 [TBL] [Abstract][Full Text] [Related]
22. FDTD method study on the effects of geometric parameters on the W- Al Lyu J; Cui G; Shi L; Gao L; Bai M; Jiang L Nanotechnology; 2021 Feb; 32(8):085706. PubMed ID: 33157542 [TBL] [Abstract][Full Text] [Related]
23. Exploiting zirconium nitride for an efficient heat-resistant absorber and emitter pair for solar thermophotovoltaic systems. Ijaz S; Rana AS; Ahmad Z; Rehman B; Zubair M; Mehmood MQ Opt Express; 2021 Sep; 29(20):31537-31548. PubMed ID: 34615245 [TBL] [Abstract][Full Text] [Related]
24. Preparation of Flexible Wavelength-Selective Metasurface for Infrared Radiation Regulation. Zhou J; Zhan Z; Zhu F; Han Y ACS Appl Mater Interfaces; 2023 May; 15(17):21629-21639. PubMed ID: 37094293 [TBL] [Abstract][Full Text] [Related]
25. A tungsten-based metamaterial emitter for solar thermophotovoltaic systems. Cao Y; Zhang H; Chen N; Liu H; Feng Y; Wu X Phys Chem Chem Phys; 2024 May; 26(18):13909-13914. PubMed ID: 38666381 [TBL] [Abstract][Full Text] [Related]
26. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime. Wu S; Gu Y; Ye Y; Ye H; Chen L Opt Express; 2018 Aug; 26(17):21479-21489. PubMed ID: 30130854 [TBL] [Abstract][Full Text] [Related]
27. Genetic-algorithm-empowered metasurface design: simultaneous realization of high microwave frequency-selection and low infrared surface-emissivity. Zhu R; Zhang Z; Wang J; Xu C; Sui S; Wang X; Liu T; Zhu Y; Zhang L; Wang J; Qu S Opt Express; 2021 Jun; 29(13):20150-20159. PubMed ID: 34266110 [TBL] [Abstract][Full Text] [Related]
28. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array. Gu W; Tang G; Tao W Opt Express; 2015 Nov; 23(24):30681-94. PubMed ID: 26698700 [TBL] [Abstract][Full Text] [Related]
29. Thermal degradation of refractory layered metamaterial for thermophotovoltaic emitter under high vacuum condition. Kim JH; Jung SM; Shin MW Opt Express; 2019 Feb; 27(3):3039-3054. PubMed ID: 30732331 [TBL] [Abstract][Full Text] [Related]
30. Optically transparent coding metasurface with simultaneously low infrared emissivity and microwave scattering reduction. Meng Z; Tian C; Xu C; Wang J; Li X; Huang S; Fan Q; Qu S Opt Express; 2020 Sep; 28(19):27774-27784. PubMed ID: 32988063 [TBL] [Abstract][Full Text] [Related]
31. Ultra-thin and near-unity selective emitter for efficient cooling. Kim DH; Lee GJ; Heo SY; Son S; Kang KM; Lee H; Song YM Opt Express; 2021 Sep; 29(20):31364-31375. PubMed ID: 34615230 [TBL] [Abstract][Full Text] [Related]
32. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems. Ghanekar A; Lin L; Zheng Y Opt Express; 2016 May; 24(10):A868-77. PubMed ID: 27409959 [TBL] [Abstract][Full Text] [Related]
33. MEMS-based meta-emitter with actively tunable radiation power characteristic. Li K; Liang Y; Lin YS Discov Nano; 2024 Aug; 19(1):133. PubMed ID: 39180606 [TBL] [Abstract][Full Text] [Related]
34. Deep Learning Assisted Optimization of Metasurface for Multi-Band Compatible Infrared Stealth and Radiative Thermal Management. Wang L; Dong J; Zhang W; Zheng C; Liu L Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985924 [TBL] [Abstract][Full Text] [Related]
35. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning. Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930 [TBL] [Abstract][Full Text] [Related]
36. Hybrid graphene metasurface for near-infrared absorbers. Rahman MM; Raza A; Younes H; AlGhaferi A; Chiesa M; Lu J Opt Express; 2019 Sep; 27(18):24866-24876. PubMed ID: 31510368 [TBL] [Abstract][Full Text] [Related]
37. Lambertian thermal emitter based on plasmonic enhanced absorption. Wang CM; Tsai DP Opt Express; 2016 Aug; 24(16):18382-7. PubMed ID: 27505801 [TBL] [Abstract][Full Text] [Related]
38. Near-field thermophotovoltaic energy conversion using an intermediate transparent substrate. Inoue T; Watanabe K; Asano T; Noda S Opt Express; 2018 Jan; 26(2):A192-A208. PubMed ID: 29401929 [TBL] [Abstract][Full Text] [Related]
39. Wavelength-Selective Three-Dimensional Thermal Emitters via Imprint Lithography and Conformal Metallization. Li S; Kazemi-Moridani A; Zhou Y; Howell IR; Kothari R; Lee JH; Watkins JJ ACS Appl Mater Interfaces; 2018 Mar; 10(9):8173-8179. PubMed ID: 29436219 [TBL] [Abstract][Full Text] [Related]
40. Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene. Krishna A; Kim JM; Leem J; Wang MC; Nam S; Lee J Nano Lett; 2019 Aug; 19(8):5086-5092. PubMed ID: 31251631 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]