BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 30823685)

  • 1. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach.
    Santos-Rosales V; Ardao I; Alvarez-Lorenzo C; Ribeiro N; Oliveira AL; García-González CA
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30823685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability Studies of Starch Aerogel Formulations for Biomedical Applications.
    Santos-Rosales V; Alvarez-Rivera G; Hillgärtner M; Cifuentes A; Itskov M; García-González CA; Rege A
    Biomacromolecules; 2020 Dec; 21(12):5336-5344. PubMed ID: 33259188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying.
    Alavi F; Ciftci ON
    Carbohydr Polym; 2022 Sep; 292():119607. PubMed ID: 35725150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering.
    Iglesias-Mejuto A; García-González CA
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes.
    Starbird R; García-González CA; Smirnova I; Krautschneider WH; Bauhofer W
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():177-83. PubMed ID: 24582238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, drying process and medical application of polysaccharide-based aerogels.
    El-Naggar ME; Othman SI; Allam AA; Morsy OM
    Int J Biol Macromol; 2020 Feb; 145():1115-1128. PubMed ID: 31678101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials.
    Druel L; Bardl R; Vorwerg W; Budtova T
    Biomacromolecules; 2017 Dec; 18(12):4232-4239. PubMed ID: 29068674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold.
    Rubenstein DA; Lu H; Mahadik SS; Leventis N; Yin W
    J Biomater Sci Polym Ed; 2012; 23(9):1171-84. PubMed ID: 21619731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO
    Milovanovic S; Markovic D; Jankovic-Castvan I; Lukic I
    Carbohydr Polym; 2024 May; 331():121874. PubMed ID: 38388060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of nanoporous aerogels from wheat starch.
    Ubeyitogullari A; Ciftci ON
    Carbohydr Polym; 2016 Aug; 147():125-132. PubMed ID: 27178916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels.
    Smirnova I; Gurikov P
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():307-334. PubMed ID: 28375771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth factors delivery from hybrid PCL-starch scaffolds processed using supercritical fluid technology.
    Diaz-Gomez L; Concheiro A; Alvarez-Lorenzo C; García-González CA
    Carbohydr Polym; 2016 May; 142():282-92. PubMed ID: 26917401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation.
    Alavi F; Ciftci ON
    Int J Biol Macromol; 2024 Apr; 264(Pt 1):129945. PubMed ID: 38311127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model.
    Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.
    Marquez-Escalante J; Carvajal-Millan E; Miki-Yoshida M; Alvarez-Contreras L; Toledo-Guillén AR; Lizardi-Mendoza J; Rascón-Chu A
    Molecules; 2013 May; 18(5):5531-42. PubMed ID: 23673527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging.
    da Silva FT; de Oliveira JP; Fonseca LM; Bruni GP; da Rosa Zavareze E; Dias ARG
    Int J Biol Macromol; 2020 Jul; 155():6-13. PubMed ID: 32194107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics.
    Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels.
    Lei C; Li J; Sun C; Yang H; Xia T; Hu Z; Zhang Y
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29601481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications.
    Zamora-Sequeira R; Ardao I; Starbird R; García-González CA
    Carbohydr Polym; 2018 Jun; 189():304-312. PubMed ID: 29580413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.