These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 30823775)
1. Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach. Kilgour M; Agarwalla BK; Segal D J Chem Phys; 2019 Feb; 150(8):084111. PubMed ID: 30823775 [TBL] [Abstract][Full Text] [Related]
2. Non-equilibrium spin-boson model: counting statistics and the heat exchange fluctuation theorem. Nicolin L; Segal D J Chem Phys; 2011 Oct; 135(16):164106. PubMed ID: 22047227 [TBL] [Abstract][Full Text] [Related]
3. Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach. Brenes M; Min B; Anto-Sztrikacs N; Bar-Gill N; Segal D J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38916270 [TBL] [Abstract][Full Text] [Related]
4. Quantum bath effects on nonequilibrium heat transport in model molecular junctions. Carpio-Martínez P; Hanna G J Chem Phys; 2021 Mar; 154(9):094108. PubMed ID: 33685175 [TBL] [Abstract][Full Text] [Related]
5. Non-Markovian full counting statistics in quantum dot molecules. Xue HB; Jiao HJ; Liang JQ; Liu WM Sci Rep; 2015 Mar; 5():8978. PubMed ID: 25752245 [TBL] [Abstract][Full Text] [Related]
6. Heat transfer statistics in mixed quantum-classical systems. Liu J; Hsieh CY; Segal D; Hanna G J Chem Phys; 2018 Dec; 149(22):224104. PubMed ID: 30553258 [TBL] [Abstract][Full Text] [Related]
7. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: divergences and resolution. Thingna J; Zhou H; Wang JS J Chem Phys; 2014 Nov; 141(19):194101. PubMed ID: 25416868 [TBL] [Abstract][Full Text] [Related]
8. Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems. Liu H; Wang C; Wang LQ; Ren J Phys Rev E; 2019 Mar; 99(3-1):032114. PubMed ID: 30999465 [TBL] [Abstract][Full Text] [Related]
9. Perturbation expansions of stochastic wavefunctions for open quantum systems. Ke Y; Zhao Y J Chem Phys; 2017 Nov; 147(18):184103. PubMed ID: 29141416 [TBL] [Abstract][Full Text] [Related]
10. Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. Kato A; Tanimura Y J Chem Phys; 2016 Dec; 145(22):224105. PubMed ID: 27984915 [TBL] [Abstract][Full Text] [Related]
11. From dissipative dynamics to studies of heat transfer at the nanoscale: analysis of the spin-boson model. Boudjada N; Segal D J Phys Chem A; 2014 Nov; 118(47):11323-36. PubMed ID: 25396751 [TBL] [Abstract][Full Text] [Related]
12. Nonequilibrium heat transport in a molecular junction: A mixed quantum-classical approach. Carpio-Martínez P; Hanna G J Chem Phys; 2019 Aug; 151(7):074112. PubMed ID: 31438711 [TBL] [Abstract][Full Text] [Related]
13. Statistics of quantum heat in the Caldeira-Leggett model. Zhang ZZ; Tan QS; Wu W Phys Rev E; 2024 Jun; 109(6-1):064134. PubMed ID: 39021018 [TBL] [Abstract][Full Text] [Related]
14. Test of fluctuation theorems in non-Markovian open quantum systems. Kawamoto T; Hatano N Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031116. PubMed ID: 22060337 [TBL] [Abstract][Full Text] [Related]
15. Path-integral simulations with fermionic and bosonic reservoirs: transport and dissipation in molecular electronic junctions. Simine L; Segal D J Chem Phys; 2013 Jun; 138(21):214111. PubMed ID: 23758362 [TBL] [Abstract][Full Text] [Related]
16. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law. Hsiang JT; Chou CH; Subaşı Y; Hu BL Phys Rev E; 2018 Jan; 97(1-1):012135. PubMed ID: 29448480 [TBL] [Abstract][Full Text] [Related]
17. Modeling quantum nuclei with perturbed path integral molecular dynamics. Poltavsky I; Tkatchenko A Chem Sci; 2016 Feb; 7(2):1368-1372. PubMed ID: 29910893 [TBL] [Abstract][Full Text] [Related]
18. Mean field theory of thermal energy transport in molecular junctions. Kelly A J Chem Phys; 2019 May; 150(20):204107. PubMed ID: 31153194 [TBL] [Abstract][Full Text] [Related]
19. Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations. Xu X; Guo C; Chen R J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404199 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of quantum dissipation systems interacting with fermion and boson grand canonical bath ensembles: hierarchical equations of motion approach. Jin J; Welack S; Luo J; Li XQ; Cui P; Xu RX; Yan Y J Chem Phys; 2007 Apr; 126(13):134113. PubMed ID: 17430022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]