These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30823776)

  • 1. Using isothermal-isobaric Monte Carlo simulation to study the wetting behavior of model systems.
    Jain K; Rane KS; Errington JR
    J Chem Phys; 2019 Feb; 150(8):084110. PubMed ID: 30823776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation methods for computing the wetting and drying properties of model systems.
    Rane KS; Kumar V; Errington JR
    J Chem Phys; 2011 Dec; 135(23):234102. PubMed ID: 22191859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of the interface potential from a series of canonical ensemble simulations.
    Jain K; Schultz AJ; Errington JR
    J Chem Phys; 2019 Jul; 151(4):044103. PubMed ID: 31370560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the interface potential approach for studying wetting behavior within a molecular dynamics framework.
    Jain K; Schultz AJ; Errington JR
    J Chem Phys; 2019 May; 150(20):204118. PubMed ID: 31153165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding wetting of immiscible liquids near a solid surface using molecular simulation.
    Kumar V; Errington JR
    J Chem Phys; 2013 Aug; 139(6):064110. PubMed ID: 23947846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation strategies to compute interfacial and bulk properties of binary fluid mixtures.
    Kumar V; Errington JR
    J Chem Phys; 2013 May; 138(17):174112. PubMed ID: 23656119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces.
    Kumar V; Sridhar S; Errington JR
    J Chem Phys; 2011 Nov; 135(18):184702. PubMed ID: 22088073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of interfacial properties via free-energy-based molecular simulation: The influence of system size.
    Grzelak EM; Errington JR
    J Chem Phys; 2010 Jun; 132(22):224702. PubMed ID: 20550411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of interfacial properties via grand canonical transition matrix Monte Carlo simulation.
    Grzelak EM; Errington JR
    J Chem Phys; 2008 Jan; 128(1):014710. PubMed ID: 18190215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo Simulation Methods for Computing Liquid-Vapor Saturation Properties of Model Systems.
    Rane KS; Murali S; Errington JR
    J Chem Theory Comput; 2013 Jun; 9(6):2552-66. PubMed ID: 26583852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.
    Rane KS; Errington JR
    J Chem Phys; 2014 Nov; 141(17):174706. PubMed ID: 25381536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the melting point of hard spheres from direct coexistence simulation methods.
    Noya EG; Vega C; de Miguel E
    J Chem Phys; 2008 Apr; 128(15):154507. PubMed ID: 18433235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Monte Carlo simulation to compute liquid-vapor saturation properties of ionic liquids.
    Rane KS; Errington JR
    J Phys Chem B; 2013 Jul; 117(26):8018-30. PubMed ID: 23734733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations.
    Ghoufi A; Morineau D; Lefort R; Hureau I; Hennous L; Zhu H; Szymczyk A; Malfreyt P; Maurin G
    J Chem Phys; 2011 Feb; 134(7):074104. PubMed ID: 21341825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale limit to the applicability of Wenzel's equation.
    Grzelak EM; Errington JR
    Langmuir; 2010 Aug; 26(16):13297-304. PubMed ID: 20695571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Carboxylic Acid on the Wetting Properties of a Model Water-Octane-Silica System.
    Guo W; Errington JR
    Langmuir; 2019 May; 35(20):6540-6549. PubMed ID: 31039315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations in generalized isobaric-isothermal ensembles.
    Okumura H; Okamoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026702. PubMed ID: 15447615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
    Schrader M; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061104. PubMed ID: 19658470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating surface tension using grand-canonical transition-matrix Monte Carlo simulation and finite-size scaling.
    Errington JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):012102. PubMed ID: 12636539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.