BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30824054)

  • 1. Arabidopsis Ca
    Sui W; Guo K; Li L; Liu S; Takano T; Zhang X
    Plant Sci; 2019 Apr; 281():213-222. PubMed ID: 30824054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana.
    Sakamoto H; Matsuda O; Iba K
    Plant J; 2008 Nov; 56(3):411-22. PubMed ID: 18643991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system.
    Saibi W; Feki K; Ben Mahmoud R; Brini F
    Planta; 2015 Nov; 242(5):1187-94. PubMed ID: 26105651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fumarylacetoacetate hydrolase is involved in salt stress response in Arabidopsis.
    Huang L; Hu C; Cai W; Zhu Q; Gao B; Zhang X; Ren C
    Planta; 2018 Aug; 248(2):499-511. PubMed ID: 29785518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis cysteine proteinase inhibitor AtCYSb interacts with a Ca(2+)-dependent nuclease, AtCaN2.
    Guo K; Bu Y; Takano T; Liu S; Zhang X
    FEBS Lett; 2013 Nov; 587(21):3417-21. PubMed ID: 24076026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress.
    Shafi A; Chauhan R; Gill T; Swarnkar MK; Sreenivasulu Y; Kumar S; Kumar N; Shankar R; Ahuja PS; Singh AK
    Plant Mol Biol; 2015 Apr; 87(6):615-31. PubMed ID: 25754733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning, expression, and characterization of a Ca2+-dependent nuclease of Arabidopsis thaliana.
    Guo K; Liu S; Takano T; Zhang X
    Protein Expr Purif; 2012 May; 83(1):70-4. PubMed ID: 22450164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide-responsive gene expression in Arabidopsis thaliana and Zea mays.
    Xu J; Tran T; Padilla Marcia CS; Braun DM; Goggin FL
    Plant Physiol Biochem; 2017 Aug; 117():51-60. PubMed ID: 28587993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of SOD and APX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance.
    Shafi A; Gill T; Zahoor I; Ahuja PS; Sreenivasulu Y; Kumar S; Singh AK
    Mol Biol Rep; 2019 Apr; 46(2):1985-2002. PubMed ID: 30706357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of phytochelatin synthase AtPCS2 enhances salt tolerance in Arabidopsis thaliana.
    Kim YO; Kang H; Ahn SJ
    J Plant Physiol; 2019 Sep; 240():153011. PubMed ID: 31357099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana].
    Li ZQ; Li JT; Bing J; Zhang GF
    Yi Chuan; 2019 Jun; 41(6):534-547. PubMed ID: 31257201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana.
    Ben Rejeb K; Benzarti M; Debez A; Bailly C; Savouré A; Abdelly C
    J Plant Physiol; 2015 Feb; 174():5-15. PubMed ID: 25462961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipases Dζ1 and Dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress.
    Ben Othman A; Ellouzi H; Planchais S; De Vos D; Faiyue B; Carol P; Abdelly C; Savouré A
    Planta; 2017 Oct; 246(4):721-735. PubMed ID: 28667438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation.
    Guan Q; Wang Z; Wang X; Takano T; Liu S
    J Plant Physiol; 2015 Mar; 175():183-91. PubMed ID: 25644292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GhEIN3, a cotton (Gossypium hirsutum) homologue of AtEIN3, is involved in regulation of plant salinity tolerance.
    Wang XQ; Han LH; Zhou W; Tao M; Hu QQ; Zhou YN; Li XB; Li DD; Huang GQ
    Plant Physiol Biochem; 2019 Oct; 143():83-93. PubMed ID: 31491703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated bacterial and plant sulfur metabolism in
    Andrés-Barrao C; Alzubaidy H; Jalal R; Mariappan KG; de Zélicourt A; Bokhari A; Artyukh O; Alwutayd K; Rawat A; Shekhawat K; Almeida-Trapp M; Saad MM; Hirt H
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34772809
    [No Abstract]   [Full Text] [Related]  

  • 17. Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis.
    Zsigmond L; Szepesi A; Tari I; Rigó G; Király A; Szabados L
    Plant Sci; 2012 Jan; 182():87-93. PubMed ID: 22118619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana.
    Chen X; Huang Q; Zhang F; Wang B; Wang J; Zheng J
    Int J Mol Sci; 2014 Aug; 15(8):14819-34. PubMed ID: 25153634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive Oxygen Species in Arabidopsis thaliana Shoots and Roots.
    Matsuo M; Johnson JM; Hieno A; Tokizawa M; Nomoto M; Tada Y; Godfrey R; Obokata J; Sherameti I; Yamamoto YY; Böhmer FD; Oelmüller R
    Mol Plant; 2015 Aug; 8(8):1253-73. PubMed ID: 25882345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions.
    Lee S; Lee HJ; Huh SU; Paek KH; Ha JH; Park CM
    Plant Sci; 2014 Oct; 227():76-83. PubMed ID: 25219309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.