BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30824090)

  • 1. Manufacture of a novel anisotropic bacterial nanocellulose hydrogel membrane by using a rotary drum bioreactor.
    Chen G; Chen L; Wang W; Hong FF; Zhu M
    Carbohydr Polym; 2019 May; 211():281-288. PubMed ID: 30824090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.
    Wu SC; Li MH
    J Biosci Bioeng; 2015 Oct; 120(4):444-9. PubMed ID: 25823854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Evaluation of Bacterial Nanocellulose/Hyaluronic Acid Composite Artificial Cornea for Application of Corneal Transplantation.
    Luo Y; Li G; Chen L; Hong FF
    Biomacromolecules; 2023 Jan; 24(1):201-212. PubMed ID: 36441906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis.
    Hong F; Wei B; Chen L
    Biomed Res Int; 2015; 2015():560365. PubMed ID: 26090420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH.
    Chen G; Wu G; Chen L; Wang W; Hong FF; Jönsson LJ
    Carbohydr Polym; 2019 Jul; 215():280-288. PubMed ID: 30981355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White biotechnology for cellulose manufacturing--the HoLiR concept.
    Kralisch D; Hessler N; Klemm D; Erdmann R; Schmidt W
    Biotechnol Bioeng; 2010 Mar; 105(4):740-7. PubMed ID: 19816981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation of air-dried bacterial nanocellulose conduits in a small-caliber vascular prosthesis rabbit model.
    Bao L; Hong FF; Li G; Hu G; Chen L
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111922. PubMed ID: 33641915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial production of homogeneously layered cellulose pellicles in a membrane bioreactor.
    Hofinger M; Bertholdt G; Weuster-Botz D
    Biotechnol Bioeng; 2011 Sep; 108(9):2237-40. PubMed ID: 21495013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of nanocellulose in miniature-bioreactor: Optimization and characterization.
    Khazeni S; Hatamian-Zarmi A; Yazdian F; Mokhtari-Hosseini ZB; Ebrahimi-Hosseinzadeh B; Noorani B; Amoabedini G; Soudi MR
    Prep Biochem Biotechnol; 2017 Apr; 47(4):371-378. PubMed ID: 27824292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of bacterial nanocellulose fermentation using recycled paper sludge and development of novel composites.
    Soares da Silva FAG; Fernandes M; Souto AP; Ferreira EC; Dourado F; Gama M
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9143-9154. PubMed ID: 31650194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved bacterial nanocellulose production from glucose without the loss of quality by evaluating thirteen agitator configurations at low speed.
    Chen G; Chen L; Wang W; Chen S; Wang H; Wei Y; Hong FF
    Microb Biotechnol; 2019 Nov; 12(6):1387-1402. PubMed ID: 31503407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles.
    Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA
    Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using In situ Dynamic Cultures to Rapidly Biofabricate Fabric-Reinforced Composites of Chitosan/Bacterial Nanocellulose for Antibacterial Wound Dressings.
    Zhang P; Chen L; Zhang Q; Hong FF
    Front Microbiol; 2016; 7():260. PubMed ID: 26973634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioconversion of Waste Fiber Sludge to Bacterial Nanocellulose and Use for Reinforcement of CTMP Paper Sheets.
    Chen G; Wu G; Alriksson B; Wang W; Hong FF; Jönsson LJ
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation.
    Fu L; Zhou P; Zhang S; Yang G
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2995-3000. PubMed ID: 23623124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.