These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30824095)

  • 1. Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength.
    Fneich F; Ville J; Seantier B; Aubry T
    Carbohydr Polym; 2019 May; 211():315-321. PubMed ID: 30824095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils.
    Jowkarderis L; van de Ven TG
    Carbohydr Polym; 2015 Jun; 123():416-23. PubMed ID: 25843875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids.
    Alves L; Ferraz E; Lourenço AF; Ferreira PJ; Rasteiro MG; Gamelas JAF
    Carbohydr Polym; 2020 Jun; 237():116109. PubMed ID: 32241451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology.
    Song Y; Kim B; Park JD; Lee D
    Carbohydr Polym; 2023 Jan; 300():120262. PubMed ID: 36372514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions.
    Lu P; Liu R; Liu X; Wu M
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30297645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Swelling, Mechanical and Thermal Properties of Cellulose Nanofibrils (CNF)/Poly(vinyl alcohol) (PVA) Hydrogels with Controlled Porous Structure.
    Xu ZY; Li JY
    J Nanosci Nanotechnol; 2018 Jan; 18(1):668-675. PubMed ID: 29768893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q
    Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sol-gel transition of ultra-low solid content TEMPO-cellulose nanofibril/mixed-linkage β-glucan bionanocomposite gels.
    Arola S; Ansari M; Oksanen A; Retulainen E; Hatzikiriakos SG; Brumer H
    Soft Matter; 2018 Nov; 14(46):9393-9401. PubMed ID: 30420978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils.
    Aarstad O; Heggset EB; Pedersen IS; Bjørnøy SH; Syverud K; Strand BL
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2019 Feb; 20(2):750-757. PubMed ID: 30557007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-properties relationships of defined CNF single-networks crosslinked by telechelic PEGs.
    Cortes Ruiz MF; Garemark J; Ritter M; Brusentsev Y; Larsson PT; Olsén P; Wågberg L
    Carbohydr Polym; 2024 Sep; 339():122245. PubMed ID: 38823913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials.
    Baniasadi H; Madani Z; Ajdary R; Rojas OJ; Seppälä J
    Mater Sci Eng C Mater Biol Appl; 2021 Nov; 130():112424. PubMed ID: 34702510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology of cellulose nanocrystal and nanofibril suspensions.
    Xu J; Wang P; Yuan B; Zhang H
    Carbohydr Polym; 2024 Jan; 324():121527. PubMed ID: 37985059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions.
    Xiang W; Preisig N; Ketola A; Tardy BL; Bai L; Ketoja JA; Stubenrauch C; Rojas OJ
    Biomacromolecules; 2019 Dec; 20(12):4361-4369. PubMed ID: 31478654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.