These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 30824123)
1. The influence of the isocyanoesters structure on the course of enzymatic Ugi reactions. Wilk M; Brodzka A; Koszelewski D; Madej A; Paprocki D; Żądło-Dobrowolska A; Ostaszewski R Bioorg Chem; 2019 Dec; 93():102817. PubMed ID: 30824123 [TBL] [Abstract][Full Text] [Related]
2. Still Unconquered: Enantioselective Passerini and Ugi Multicomponent Reactions. Wang Q; Wang DX; Wang MX; Zhu J Acc Chem Res; 2018 May; 51(5):1290-1300. PubMed ID: 29708723 [TBL] [Abstract][Full Text] [Related]
3. Effect of water activity and immobilization on fatty acid selectivity for esterification reactions mediated by lipases. Lee CH; Parkin KL Biotechnol Bioeng; 2001 Oct; 75(2):219-27. PubMed ID: 11536145 [TBL] [Abstract][Full Text] [Related]
4. Acidolysis and glyceride synthesis reactions using fatty acids with two Pseudomonas lipases having different substrate specificities. Kojima Y; Sakuradani E; Shimizu S J Biosci Bioeng; 2006 Sep; 102(3):179-83. PubMed ID: 17046530 [TBL] [Abstract][Full Text] [Related]
5. Understanding Candida rugosa lipases: an overview. Domínguez de María P; Sánchez-Montero JM; Sinisterra JV; Alcántara AR Biotechnol Adv; 2006; 24(2):180-96. PubMed ID: 16288844 [TBL] [Abstract][Full Text] [Related]
6. Discovery and characterization of a stable lipase with preference toward long-chain fatty acids. Chen M; Gao X; Yang W; Sun C; Yang J; Zhang H; Song Y Biotechnol Lett; 2020 Jan; 42(1):171-180. PubMed ID: 31745842 [TBL] [Abstract][Full Text] [Related]
10. A glimpse into the specialization history of the lipases/acyltransferases family of CpLIP2. Jan AH; Dubreucq E; Drone J; Subileau M Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1105-1113. PubMed ID: 28627478 [TBL] [Abstract][Full Text] [Related]
11. Substrate specificity of the lipase from Candida parapsilosis. Briand D; Dubreucq E; Grimaud J; Galzy P Lipids; 1995 Aug; 30(8):747-54. PubMed ID: 7475991 [TBL] [Abstract][Full Text] [Related]
12. Regioselective enzymatic acylation of methyl shikimate. Influence of acyl chain length and solvent polarity on enzyme specificity. Armesto N; Ferrero M; Fernández S; Gotor V J Org Chem; 2002 Jul; 67(14):4978-81. PubMed ID: 12098318 [TBL] [Abstract][Full Text] [Related]
13. Novel surface-active oligofructose fatty acid mono-esters by enzymatic esterification. van Kempen SE; Boeriu CG; Schols HA; de Waard P; van der Linden E; Sagis LM Food Chem; 2013 Jun; 138(2-3):1884-91. PubMed ID: 23411321 [TBL] [Abstract][Full Text] [Related]
14. Selectivity of Candida antarctica B lipase toward fatty acid and (Iso)propanol substrates in esterification reactions in organic media. Arsan J; Parkin KL J Agric Food Chem; 2000 Aug; 48(8):3738-43. PubMed ID: 10956180 [TBL] [Abstract][Full Text] [Related]
15. Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Holmquist M Chem Phys Lipids; 1998 Jun; 93(1-2):57-66. PubMed ID: 9720250 [TBL] [Abstract][Full Text] [Related]
16. Comparative fatty acid selectivity of lipases in esterification reactions with glycerol and diol analogues in organic media. Lee CH; Parkin KL Biotechnol Prog; 2000; 16(3):372-7. PubMed ID: 10835238 [TBL] [Abstract][Full Text] [Related]
17. Expanding the substrate scope of Ugi five-center, four-component reaction U-5C-4CR): ketones as coupling partners for secondary amino acids. Dawidowski M; Sobczak S; Wilczek M; Kulesza A; Turło J Mol Divers; 2014 Feb; 18(1):61-77. PubMed ID: 24154732 [TBL] [Abstract][Full Text] [Related]
18. Lipase-catalyzed synthesis of sorbitol-fatty acid esters at extremely high substrate concentrations. Kim HJ; Youn SH; Shin CS J Biotechnol; 2006 May; 123(2):174-84. PubMed ID: 16356573 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic esterification of free fatty acids in vegetable oils utilizing different immobilized lipases. von der Haar D; Stäbler A; Wichmann R; Schweiggert-Weisz U Biotechnol Lett; 2015 Jan; 37(1):169-74. PubMed ID: 25214229 [TBL] [Abstract][Full Text] [Related]
20. Fatty acid steryl, stanyl, and steroid esters by esterification and transesterification in vacuo using Candida rugosa lipase as catalyst. Weber N; Weitkamp P; Mukherjee KD J Agric Food Chem; 2001 Jan; 49(1):67-71. PubMed ID: 11170561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]