BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30824440)

  • 1. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.
    Fixen KR; Zheng Y; Harris DF; Shaw S; Yang ZY; Dean DR; Seefeldt LC; Harwood CS
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10163-7. PubMed ID: 27551090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pathway for biological methane production using bacterial iron-only nitrogenase.
    Zheng Y; Harris DF; Yu Z; Fu Y; Poudel S; Ledbetter RN; Fixen KR; Yang ZY; Boyd ES; Lidstrom ME; Seefeldt LC; Harwood CS
    Nat Microbiol; 2018 Mar; 3(3):281-286. PubMed ID: 29335552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.
    McKinlay JB; Harwood CS
    mBio; 2011; 2(2):. PubMed ID: 21427286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Hydrogen Isotope Fractionation Distinguishes Nitrogenase-Derived Methane from Other Methane Sources.
    Luxem KE; Leavitt WD; Zhang X
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32709722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttranslational modification of a vanadium nitrogenase.
    Heiniger EK; Harwood CS
    Microbiologyopen; 2015 Aug; 4(4):597-603. PubMed ID: 26097040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria.
    McKinlay JB; Harwood CS
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11669-75. PubMed ID: 20558750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively.
    Heiniger EK; Oda Y; Samanta SK; Harwood CS
    Appl Environ Microbiol; 2012 Feb; 78(4):1023-32. PubMed ID: 22179236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris.
    Huang JJ; Heiniger EK; McKinlay JB; Harwood CS
    Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2 metabolism in photosynthetic bacteria and relationship to N2 fixation.
    Willison JC; Jouanneau Y; Colbeau A; Vignais PM
    Ann Microbiol (Paris); 1983; 134B(1):115-35. PubMed ID: 6139053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The path of electron transfer to nitrogenase in a phototrophic alpha-proteobacterium.
    Fixen KR; Pal Chowdhury N; Martinez-Perez M; Poudel S; Boyd ES; Harwood CS
    Environ Microbiol; 2018 Jul; 20(7):2500-2508. PubMed ID: 29708646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model.
    Chowdhury NB; Alsiyabi A; Saha R
    Microbiol Spectr; 2022 Aug; 10(4):e0146322. PubMed ID: 35730964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells.
    Hillmer P; Gest H
    J Bacteriol; 1977 Feb; 129(2):732-9. PubMed ID: 838686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Alternative Nitrogenases in
    du Toit JP; Lea-Smith DJ; Git A; Hervey JRD; Howe CJ; Pott RWM
    ACS Synth Biol; 2021 Sep; 10(9):2167-2178. PubMed ID: 34431288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle.
    McKinlay JB; Oda Y; Rühl M; Posto AL; Sauer U; Harwood CS
    J Biol Chem; 2014 Jan; 289(4):1960-70. PubMed ID: 24302724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-enhanced bioaccumulation of molybdenum by nitrogen-deprived recombinant anoxygenic photosynthetic bacterium Rhodopseudomonas palustris.
    Naito T; Sachuronggui ; Ueki M; Maeda I
    Biosci Biotechnol Biochem; 2016; 80(2):407-13. PubMed ID: 26376718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii.
    Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK
    Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redirection of metabolism for biological hydrogen production.
    Rey FE; Heiniger EK; Harwood CS
    Appl Environ Microbiol; 2007 Mar; 73(5):1665-71. PubMed ID: 17220249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively.
    Shimizu T; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9739-9749. PubMed ID: 31696284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative Escherichia coli makes a substantial contribution to H2 production in coculture with phototrophic Rhodopseudomonas palustris.
    Sangani AA; McCully AL; LaSarre B; McKinlay JB
    FEMS Microbiol Lett; 2019 Jul; 366(14):. PubMed ID: 31329226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.