These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30824754)

  • 1. Tensor Decomposition for Colour Image Segmentation of Burn Wounds.
    Cirillo MD; Mirdell R; Sjöberg F; Pham TD
    Sci Rep; 2019 Mar; 9(1):3291. PubMed ID: 30824754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer assisted diagnosis tool for the classification of burns by depth of injury.
    Serrano C; Acha B; Gómez-Cía T; Acha JI; Roa LM
    Burns; 2005 May; 31(3):275-81. PubMed ID: 15774281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation and classification of burn images by color and texture information.
    Acha B; Serrano C; Acha JI; Roa LM
    J Biomed Opt; 2005; 10(3):034014. PubMed ID: 16229658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convolution neural network for effective burn region segmentation of color images.
    Chauhan J; Goyal P
    Burns; 2021 Jun; 47(4):854-862. PubMed ID: 33158632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAD tool for burn diagnosis.
    Acha B; Serrano C; Acha JI; Roa LM
    Inf Process Med Imaging; 2003 Jul; 18():294-305. PubMed ID: 15344466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning.
    Liu H; Yue K; Cheng S; Li W; Fu Z
    Comput Math Methods Med; 2021; 2021():5514224. PubMed ID: 33880130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burn Images Segmentation Based on Burn-GAN.
    Dai F; Zhang D; Su K; Xin N
    J Burn Care Res; 2021 Aug; 42(4):755-762. PubMed ID: 33336696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can spectral-spatial image segmentation be used to discriminate experimental burn wounds?
    Paluchowski LA; Nordgaard HB; Bjorgan A; Hov H; Berget SM; Randeberg LL
    J Biomed Opt; 2016 Oct; 21(10):101413. PubMed ID: 27228458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-feature representation for burn depth classification via burn images.
    Zhang B; Zhou J
    Artif Intell Med; 2021 Aug; 118():102128. PubMed ID: 34412845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting.
    Kong H; Gurcan M; Belkacem-Boussaid K
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1661-77. PubMed ID: 21486712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework.
    Rojas-Moraleda R; Xiong W; Halama N; Breitkopf-Heinlein K; Dooley S; Salinas L; Heermann DW; Valous NA
    Med Image Anal; 2017 May; 38():90-103. PubMed ID: 28314191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of images of skin lesions using color and texture information of surface pigmentation.
    Dhawan AP; Sicsu A
    Comput Med Imaging Graph; 1992; 16(3):163-77. PubMed ID: 1623492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving burn depth assessment for pediatric scalds by AI based on semantic segmentation of polarized light photography images.
    Cirillo MD; Mirdell R; Sjöberg F; Pham TD
    Burns; 2021 Nov; 47(7):1586-1593. PubMed ID: 33947595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-field burn depth detection based on near-infrared hyperspectral imaging and ensemble regression.
    Wang P; Cao Y; Yin M; Li Y; Lv S; Huang L; Zhang D; Luo Y; Wu J
    Rev Sci Instrum; 2019 Jun; 90(6):064103. PubMed ID: 31255006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burn characterization using object-oriented hyperspectral image classification.
    Parasca SV; Calin MA
    J Biophotonics; 2022 Nov; 15(11):e202200106. PubMed ID: 35861489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved automatic detection and segmentation of cell nuclei in histopathology images.
    Al-Kofahi Y; Lassoued W; Lee W; Roysam B
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):841-52. PubMed ID: 19884070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modeling approach for burn scar assessment using natural features and elastic property.
    Zhang Y; Goldgof DB; Sarkar S; Tsap LV
    IEEE Trans Med Imaging; 2004 Oct; 23(10):1325-9. PubMed ID: 15493699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient.
    Jiao C; Su K; Xie W; Ye Z
    Burns Trauma; 2019; 7():6. PubMed ID: 30859107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.