These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Correlation between national influenza surveillance data and google trends in South Korea. Cho S; Sohn CH; Jo MW; Shin SY; Lee JH; Ryoo SM; Kim WY; Seo DW PLoS One; 2013; 8(12):e81422. PubMed ID: 24339927 [TBL] [Abstract][Full Text] [Related]
43. Performance of eHealth data sources in local influenza surveillance: a 5-year open cohort study. Timpka T; Spreco A; Dahlström Ö; Eriksson O; Gursky E; Ekberg J; Blomqvist E; Strömgren M; Karlsson D; Eriksson H; Nyce J; Hinkula J; Holm E J Med Internet Res; 2014 Apr; 16(4):e116. PubMed ID: 24776527 [TBL] [Abstract][Full Text] [Related]
44. Epidemiology of seasonal influenza in the Middle East and North Africa regions, 2010-2016: Circulating influenza A and B viruses and spatial timing of epidemics. Caini S; El-Guerche Séblain C; Ciblak MA; Paget J Influenza Other Respir Viruses; 2018 May; 12(3):344-352. PubMed ID: 29405575 [TBL] [Abstract][Full Text] [Related]
45. Latitudinal variations in seasonal activity of influenza and respiratory syncytial virus (RSV): a global comparative review. Bloom-Feshbach K; Alonso WJ; Charu V; Tamerius J; Simonsen L; Miller MA; Viboud C PLoS One; 2013; 8(2):e54445. PubMed ID: 23457451 [TBL] [Abstract][Full Text] [Related]
46. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data. Yu H; Alonso WJ; Feng L; Tan Y; Shu Y; Yang W; Viboud C PLoS Med; 2013 Nov; 10(11):e1001552. PubMed ID: 24348203 [TBL] [Abstract][Full Text] [Related]
47. Google Flu Trends Spatial Variability Validated Against Emergency Department Influenza-Related Visits. Klembczyk JJ; Jalalpour M; Levin S; Washington RE; Pines JM; Rothman RE; Dugas AF J Med Internet Res; 2016 Jun; 18(6):e175. PubMed ID: 27354313 [TBL] [Abstract][Full Text] [Related]
48. Advances in nowcasting influenza-like illness rates using search query logs. Lampos V; Miller AC; Crossan S; Stefansen C Sci Rep; 2015 Aug; 5():12760. PubMed ID: 26234783 [TBL] [Abstract][Full Text] [Related]
49. Forecasting influenza activity using self-adaptive AI model and multi-source data in Chongqing, China. Su K; Xu L; Li G; Ruan X; Li X; Deng P; Li X; Li Q; Chen X; Xiong Y; Lu S; Qi L; Shen C; Tang W; Rong R; Hong B; Ning Y; Long D; Xu J; Shi X; Yang Z; Zhang Q; Zhuang Z; Zhang L; Xiao J; Li Y EBioMedicine; 2019 Sep; 47():284-292. PubMed ID: 31477561 [TBL] [Abstract][Full Text] [Related]
50. Flexible Modeling of Epidemics with an Empirical Bayes Framework. Brooks LC; Farrow DC; Hyun S; Tibshirani RJ; Rosenfeld R PLoS Comput Biol; 2015 Aug; 11(8):e1004382. PubMed ID: 26317693 [TBL] [Abstract][Full Text] [Related]
51. Change from low to out-of-season epidemics of influenza in China during the COVID-19 pandemic: A time series study. Cao G; Guo Z; Liu J; Liu M J Med Virol; 2023 Jun; 95(6):e28888. PubMed ID: 37338082 [TBL] [Abstract][Full Text] [Related]
52. Using the Baidu Search Index to Predict the Incidence of HIV/AIDS in China. He G; Chen Y; Chen B; Wang H; Shen L; Liu L; Suolang D; Zhang B; Ju G; Zhang L; Du S; Jiang X; Pan Y; Min Z Sci Rep; 2018 Jun; 8(1):9038. PubMed ID: 29899360 [TBL] [Abstract][Full Text] [Related]
53. Web query-based surveillance in Sweden during the influenza A(H1N1)2009 pandemic, April 2009 to February 2010. Hulth A; Rydevik G Euro Surveill; 2011 May; 16(18):. PubMed ID: 21586265 [TBL] [Abstract][Full Text] [Related]
54. The moving epidemic method applied to influenza surveillance in Guangdong, China. Kang M; Tan X; Ye M; Liao Y; Song T; Tang S Int J Infect Dis; 2021 Mar; 104():594-600. PubMed ID: 33515775 [TBL] [Abstract][Full Text] [Related]
55. Tracking and predicting hand, foot, and mouth disease (HFMD) epidemics in China by Baidu queries. Xiao QY; Liu HJ; Feldman MW Epidemiol Infect; 2017 Jun; 145(8):1699-1707. PubMed ID: 28222831 [TBL] [Abstract][Full Text] [Related]
56. Prediction and surveillance of influenza epidemics. Boyle JR; Sparks RS; Keijzers GB; Crilly JL; Lind JF; Ryan LM Med J Aust; 2011 Feb; 194(4):S28-33. PubMed ID: 21401485 [TBL] [Abstract][Full Text] [Related]
57. Determination of French influenza outbreaks periods between 1985 and 2011 through a web-based Delphi method. Debin M; Souty C; Turbelin C; Blanchon T; Boëlle PY; Hanslik T; Hejblum G; Le Strat Y; Quintus F; ; Falchi A BMC Med Inform Decis Mak; 2013 Dec; 13():138. PubMed ID: 24364926 [TBL] [Abstract][Full Text] [Related]
58. Google Trends-based non-English language query data and epidemic diseases: a cross-sectional study of the popular search behaviour in Taiwan. Chang YW; Chiang WL; Wang WH; Lin CY; Hung LC; Tsai YC; Suen JL; Chen YH BMJ Open; 2020 Jul; 10(7):e034156. PubMed ID: 32624467 [TBL] [Abstract][Full Text] [Related]
59. Influenza epidemic surveillance and prediction based on electronic health record data from an out-of-hours general practitioner cooperative: model development and validation on 2003-2015 data. Michiels B; Nguyen VK; Coenen S; Ryckebosch P; Bossuyt N; Hens N BMC Infect Dis; 2017 Jan; 17(1):84. PubMed ID: 28100186 [TBL] [Abstract][Full Text] [Related]
60. Methods for detecting seasonal influenza epidemics using a school absenteeism surveillance system. Ward MA; Stanley A; Deeth LE; Deardon R; Feng Z; Trotz-Williams LA BMC Public Health; 2019 Sep; 19(1):1232. PubMed ID: 31488092 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]