These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30824807)

  • 1. Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications.
    Escudero P; Yeste J; Pascual-Izarra C; Villa R; Alvarez M
    Sci Rep; 2019 Mar; 9(1):3259. PubMed ID: 30824807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Color-switching hydrogels as integrated microfluidic pressure sensors.
    Ducloué L; Haque MA; Goral M; Ilyas M; Gong JP; Lindner A
    Sci Rep; 2024 Mar; 14(1):6333. PubMed ID: 38491048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals.
    Yeo SJ; Tu F; Kim SH; Yi GR; Yoo PJ; Lee D
    Soft Matter; 2015 Feb; 11(8):1582-8. PubMed ID: 25591944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure.
    Umh HN; Yu S; Kim YH; Lee SY; Yi J
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15802-8. PubMed ID: 27245939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed pressure sensing with elastomer membranes.
    Orth A; Schonbrun E; Crozier KB
    Lab Chip; 2011 Nov; 11(22):3810-5. PubMed ID: 21964718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal Effects and Applications of Polydimethylsiloxane Membranes with Carbon Nanoparticles.
    Pimentel-Domínguez R; Velázquez-Benítez AM; Vélez-Cordero JR; Hautefeuille M; Sánchez-Arévalo F; Hernández-Cordero J
    Polymers (Basel); 2016 Mar; 8(4):. PubMed ID: 30979195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution reversible color images on photonic crystal substrates.
    Kang P; Ogunbo SO; Erickson D
    Langmuir; 2011 Aug; 27(16):9676-80. PubMed ID: 21766808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic molding of photonic microparticles with engraved elastomeric membranes.
    Sim JY; Choi JH; Lim JM; Cho S; Kim SH; Yang SM
    Small; 2014 Oct; 10(19):3979-85. PubMed ID: 24947445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastomeric 2D grating and hemispherical optofluidic chamber for multifunctional fluidic sensing.
    Xu Z; Wang X; Han K; Li S; Liu GL
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2466-72. PubMed ID: 24323007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic biomolecule sensors based on a-Si:H microrings embedded in silicon-glass microchannels.
    Lipka T; Moldenhauer L; Wahn L; Trieu HK
    Opt Lett; 2017 Mar; 42(6):1084-1087. PubMed ID: 28295098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.
    Wang N; Tan F; Zhao Y; Tsoi CC; Fan X; Yu W; Zhang X
    Sci Rep; 2016 Jun; 6():28928. PubMed ID: 27352840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer.
    Wu C; Tse ML; Liu Z; Guan BO; Zhang AP; Lu C; Tam HY
    Analyst; 2014 Nov; 139(21):5422-9. PubMed ID: 25142213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack-Enhanced Microfluidic Stretchable E-Skin Sensor.
    Ho DH; Song R; Sun Q; Park WH; Kim SY; Pang C; Kim DH; Kim SY; Lee J; Cho JH
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44678-44686. PubMed ID: 29205030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable Biaxial and Shear Strain Sensors Using Diffractive Structural Colors.
    Quan YJ; Kim YG; Kim MS; Min SH; Ahn SH
    ACS Nano; 2020 May; 14(5):5392-5399. PubMed ID: 32275387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip.
    Haque M; Zacharia NS; Ho S; Herman PR
    Biomed Opt Express; 2013; 4(8):1472-85. PubMed ID: 24010009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Opal Photonic Crystals as an Optofluidic Platform for Fast Analysis of Hydrocarbon Mixtures.
    Xu Q; Mahpeykar SM; Burgess IB; Wang X
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20120-20127. PubMed ID: 29763285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection.
    López-Muñoz GA; Estevez MC; Peláez-Gutierrez EC; Homs-Corbera A; García-Hernandez MC; Imbaud JI; Lechuga LM
    Biosens Bioelectron; 2017 Oct; 96():260-267. PubMed ID: 28501746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities.
    Oliva-Ramirez M; Barranco A; Löffler M; Yubero F; González-Elipe AR
    ACS Nano; 2016 Jan; 10(1):1256-64. PubMed ID: 26653767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical response of magnetically actuated biocompatible membranes.
    Joisten H; Truong A; Ponomareva S; Naud C; Morel R; Hou Y; Joumard I; Auffret S; Sabon P; Dieny B
    Nanoscale; 2019 Jun; 11(22):10667-10683. PubMed ID: 31094399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color Saturation for Dynamic Optical Displays.
    Zhang J; Meng Z; Liu J; Chen S; Yu Z
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42629-42634. PubMed ID: 31623433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.