BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30824905)

  • 1. Surrogate minimal depth as an importance measure for variables in random forests.
    Seifert S; Gundlach S; Szymczak S
    Bioinformatics; 2019 Oct; 35(19):3663-3671. PubMed ID: 30824905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploitation of surrogate variables in random forests for unbiased analysis of mutual impact and importance of features.
    Voges LF; Jarren LC; Seifert S
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The revival of the Gini importance?
    Nembrini S; König IR; Wright MN
    Bioinformatics; 2018 Nov; 34(21):3711-3718. PubMed ID: 29757357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening the Random Forest Black Box of
    Wenck S; Mix T; Fischer M; Hackl T; Seifert S
    Metabolites; 2023 Oct; 13(10):. PubMed ID: 37887402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matched Forest: supervised learning for high-dimensional matched case-control studies.
    Shomal Zadeh N; Lin S; Runger GC
    Bioinformatics; 2020 Mar; 36(5):1570-1576. PubMed ID: 31621830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study becomes insight: Ecological learning from machine learning.
    Yu Q; Ji W; Prihodko L; Ross CW; Anchang JY; Hanan NP
    Methods Ecol Evol; 2021 Nov; 12(11):2117-2128. PubMed ID: 35874972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach for interpreting Random Forest models and its application to the biology of ageing.
    Fabris F; Doherty A; Palmer D; de Magalhães JP; Freitas AA
    Bioinformatics; 2018 Jul; 34(14):2449-2456. PubMed ID: 29462247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery.
    Watson OP; Cortes-Ciriano I; Taylor AR; Watson JA
    Bioinformatics; 2019 Nov; 35(22):4656-4663. PubMed ID: 31070704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable selection and validation in multivariate modelling.
    Shi L; Westerhuis JA; Rosén J; Landberg R; Brunius C
    Bioinformatics; 2019 Mar; 35(6):972-980. PubMed ID: 30165467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias in random forest variable importance measures: illustrations, sources and a solution.
    Strobl C; Boulesteix AL; Zeileis A; Hothorn T
    BMC Bioinformatics; 2007 Jan; 8():25. PubMed ID: 17254353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockoff boosted tree for model-free variable selection.
    Jiang T; Li Y; Motsinger-Reif AA
    Bioinformatics; 2021 May; 37(7):976-983. PubMed ID: 32966559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests.
    Le TT; Simmons WK; Misaki M; Bodurka J; White BC; Savitz J; McKinney BA
    Bioinformatics; 2017 Sep; 33(18):2906-2913. PubMed ID: 28472232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opening the Random Forest Black Box of the Metabolome by the Application of Surrogate Minimal Depth.
    Wenck S; Creydt M; Hansen J; Gärber F; Fischer M; Seifert S
    Metabolites; 2021 Dec; 12(1):. PubMed ID: 35050127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AutoDC: an automatic machine learning framework for disease classification.
    Bai Y; Li Y; Shen Y; Yang M; Zhang W; Cui B
    Bioinformatics; 2022 Jun; 38(13):3415-3421. PubMed ID: 35583303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block Forests: random forests for blocks of clinical and omics covariate data.
    Hornung R; Wright MN
    BMC Bioinformatics; 2019 Jun; 20(1):358. PubMed ID: 31248362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RMTL: an R library for multi-task learning.
    Cao H; Zhou J; Schwarz E
    Bioinformatics; 2019 May; 35(10):1797-1798. PubMed ID: 30256897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.