BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 30824924)

  • 1. De novo characterization of the Goji berry (Lycium barbarium L.) fruit transcriptome and analysis of candidate genes involved in sugar metabolism under different CO2 concentrations.
    Ma Y; Reddy VR; Devi MJ; Song L; Cao B
    Tree Physiol; 2019 Jun; 39(6):1032-1045. PubMed ID: 30824924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and Characterization of Three Sugar Metabolism Genes (
    Ma Y; Devi MJ; R Reddy V; Song L; Gao H; Cao B
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33562387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Elevated CO
    Ma Y; Xie Y; Ha R; Cao B; Song L
    Front Plant Sci; 2021; 12():643555. PubMed ID: 33777078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative analysis of differentially expressed genes for biosynthesis of active ingredients in fruits of different cultivars of
    Liu X; Fan W; Jiao H; Gao H; Tang J; Zhu J; Yue S; Zheng R
    Sheng Wu Gong Cheng Xue Bao; 2023 Jul; 39(7):3015-3036. PubMed ID: 37584145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated transcriptome and metabolome provide insight into flavonoid variation in goji berries (Lycium barbarum L.) from different areas in China.
    Ma R; Sun X; Yang C; Fan Y
    Plant Physiol Biochem; 2023 Jun; 199():107722. PubMed ID: 37150012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of fruit size associated quantitative trait loci featuring SLAF based high-density linkage map of goji berry (Lycium spp.).
    Rehman F; Gong H; Li Z; Zeng S; Yang T; Ai P; Pan L; Huang H; Wang Y
    BMC Plant Biol; 2020 Oct; 20(1):474. PubMed ID: 33059596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative transcriptome and metabolome analysis reveals the discrepancy in the accumulation of active ingredients between Lycium barbarum cultivars.
    Liu X; Gao H; Radani Y; Yue S; Zhang Z; Tang J; Zhu J; Zheng R
    Planta; 2024 Feb; 259(4):74. PubMed ID: 38407665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis.
    Wang G; Du X; Ji J; Guan C; Li Z; Josine TL
    Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of microRNAs and target genes in the fruit and shoot tip of Lycium chinense: a traditional Chinese medicinal plant.
    Khaldun AB; Huang W; Liao S; Lv H; Wang Y
    PLoS One; 2015; 10(1):e0116334. PubMed ID: 25587984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic and metabolomic analyses of Lycium ruthenicum and Lycium barbarum fruits during ripening.
    Zhao J; Li H; Yin Y; An W; Qin X; Wang Y; Li Y; Fan Y; Cao Y
    Sci Rep; 2020 Mar; 10(1):4354. PubMed ID: 32152358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis reveals genes related to the synthesis and metabolism of cell wall polysaccharides in goji berry (Lycium barbarum L.) from various regions.
    Ma R; Zhang M; Yang X; Guo J; Fan Y
    J Sci Food Agric; 2023 Nov; 103(14):7050-7060. PubMed ID: 37340801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fruit development and ripening orchestrating the biosynthesis and regulation of Lycium barbarum polysaccharides in goji berry.
    Zheng G; Wang Z; Wei J; Zhao J; Zhang C; Mi J; Zong Y; Liu G; Wang Y; Xu X; Zeng S
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127970. PubMed ID: 37944729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Nitrogen Fertilizer Levels on Metabolite Profiling of the
    Shi Z; Wei F; Wan R; Li Y; Wang Y; An W; Qin K; Dai G; Cao Y; Feng J
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31661883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum).
    Islam T; Yu X; Badwal TS; Xu B
    Chem Cent J; 2017 Jun; 11(1):59. PubMed ID: 29086843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fruit ripening in Lycium barbarum and Lycium ruthenicum is associated with distinct gene expression patterns.
    Zhao J; Li H; Yin Y; An W; Qin X; Wang Y; Fan Y; Li Y; Cao Y
    FEBS Open Bio; 2020 Aug; 10(8):1550-1567. PubMed ID: 32533890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of carotenoid accumulation in two goji (Lycium barbarum L. and L. ruthenicum Murr.) fruits.
    Liu Y; Zeng S; Sun W; Wu M; Hu W; Shen X; Wang Y
    BMC Plant Biol; 2014 Dec; 14():269. PubMed ID: 25511605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of phosphorus fertilizer level on the yield and metabolome of goji fruit.
    Wei F; Shi Z; Wan R; Li Y; Wang Y; An W; Qin K; Cao Y; Chen X; Wang X; Yang L; Dai G; Feng J
    Sci Rep; 2020 Sep; 10(1):14656. PubMed ID: 32887902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term treatments with high CO
    Kafkaletou M; Christopoulos MV; Tsantili E
    J Sci Food Agric; 2017 Dec; 97(15):5194-5201. PubMed ID: 28447344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic Analysis of Romanian Lycium Genotypes: Exploring
    Ciceoi R; Asanica A; Luchian V; Iordachescu M
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Analysis of Transcriptome and Metabolome Reveals Salt Stress Orchestrating the Accumulation of Specialized Metabolites in
    Lin S; Zeng S; A B; Yang X; Yang T; Zheng G; Mao G; Wang Y
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.