These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30825039)
1. A Practical Technique for Electrophysiologically Recording from Lamellated Antenna of Scarab Beetle. Chen L; Li YY; Shao KM J Chem Ecol; 2019 Apr; 45(4):392-401. PubMed ID: 30825039 [TBL] [Abstract][Full Text] [Related]
2. Increasing Signal-to-Noise Ratio in Gas Chromatography - Electroantennography Using a Deans Switch Effluent Chopper. Myrick AJ; Baker TC J Chem Ecol; 2018 Feb; 44(2):111-126. PubMed ID: 29306995 [TBL] [Abstract][Full Text] [Related]
3. Styrene, (+)-trans-(1R,4S,5S)-4-Thujanol and Oxygenated Monoterpenes Related to Host Stress Elicit Strong Electrophysiological Responses in the Bark Beetle Ips typographus. Schiebe C; Unelius CR; Ganji S; Binyameen M; Birgersson G; Schlyter F J Chem Ecol; 2019 Jun; 45(5-6):474-489. PubMed ID: 31053976 [TBL] [Abstract][Full Text] [Related]
4. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. Fraser AM; Mechaber WL; Hildebrand JG J Chem Ecol; 2003 Aug; 29(8):1813-33. PubMed ID: 12956509 [TBL] [Abstract][Full Text] [Related]
5. Specific response to herbivore-induced de novo synthesized plant volatiles provides reliable information for host plant selection in a moth. Zakir A; Bengtsson M; Sadek MM; Hansson BS; Witzgall P; Anderson P J Exp Biol; 2013 Sep; 216(Pt 17):3257-63. PubMed ID: 23737555 [TBL] [Abstract][Full Text] [Related]
6. Identification of olfactory volatiles using gas chromatography-multi-unit recordings (GCMR) in the insect antennal lobe. Byers KJ; Sanders E; Riffell JA J Vis Exp; 2013 Feb; (72):e4381. PubMed ID: 23463015 [TBL] [Abstract][Full Text] [Related]
7. Attraction and Electrophysiological Response to Identified Rectal Gland Volatiles in Noushini S; Perez J; Park SJ; Holgate D; Mendez Alvarez V; Jamie I; Jamie J; Taylor P Molecules; 2020 Mar; 25(6):. PubMed ID: 32168881 [No Abstract] [Full Text] [Related]
9. Electrophysiological and behavioral responses of the whitestriped longhorned beetle, Batocera lineolata, to the diurnal rhythm of host plant volatiles of holly, Viburnum awabuki. Yang H; Yang W; Yang CP; Zhu TH; Huang Q; Han S; Xiao JJ J Insect Sci; 2013; 13():85. PubMed ID: 24228943 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a volatile pheromone in Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) that increases attraction to a host foliar volatile. Silk PJ; Ryall K; Mayo P; Lemay MA; Grant G; Crook D; Cossé A; Fraser I; Sweeney JD; Lyons DB; Pitt D; Scarr T; Magee D Environ Entomol; 2011 Aug; 40(4):904-16. PubMed ID: 22251692 [TBL] [Abstract][Full Text] [Related]
11. Electroantennographic bioassay as a screening tool for host plant volatiles. Beck JJ; Light DM; Gee WS J Vis Exp; 2012 May; (63):e3931. PubMed ID: 22588282 [TBL] [Abstract][Full Text] [Related]
13. Identification and evaluation of semiochemicals for the biological control of the beetle Omorgus suberosus (F.) (Coleoptera: Trogidae), a facultative predator of eggs of the sea turtle Lepidochelys olivacea (Eschscholtz). Cortez V; Verdú JR; Ortiz AJ; Halffter G PLoS One; 2017; 12(2):e0172015. PubMed ID: 28192472 [TBL] [Abstract][Full Text] [Related]
14. Behavioral and Antennal Responses of Drosophila suzukii (Diptera: Drosophilidae) to Volatiles From Fruit Extracts. Abraham J; Zhang A; Angeli S; Abubeker S; Michel C; Feng Y; Rodriguez-Saona C Environ Entomol; 2015 Apr; 44(2):356-67. PubMed ID: 26313190 [TBL] [Abstract][Full Text] [Related]
15. Responses of the two-spotted oak buprestid, Agrilus biguttatus (Coleoptera: Buprestidae), to host tree volatiles. Vuts J; Woodcock CM; Sumner ME; Caulfield JC; Reed K; Inward DJ; Leather SR; Pickett JA; Birkett MA; Denman S Pest Manag Sci; 2016 Apr; 72(4):845-51. PubMed ID: 26663022 [TBL] [Abstract][Full Text] [Related]
16. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends. Nyasembe VO; Teal PE; Mukabana WR; Tumlinson JH; Torto B Parasit Vectors; 2012 Oct; 5():234. PubMed ID: 23069316 [TBL] [Abstract][Full Text] [Related]
17. Identification of Aggregation-Sex Pheromone Components for a "Living Fossil", the False Click Beetle, Palaeoxenus dohrni Horn (Coleoptera: Eucnemidae). Serrano JM; McElfresh JS; Zou Y; Millar JG J Chem Ecol; 2019 Apr; 45(4):366-370. PubMed ID: 30931507 [TBL] [Abstract][Full Text] [Related]
18. Odor Perception in the Cotton Bollworm, Helicoverpa armigera, Exposed to Juglans regia, a Marginal Host Plant. Liu H; Xiu C; Zhang T; Lu Y J Chem Ecol; 2022 Aug; 48(7-8):618-627. PubMed ID: 35831729 [TBL] [Abstract][Full Text] [Related]
19. How the choice of method influence on the results in electrophysiological studies of insect olfaction. Wibe A J Insect Physiol; 2004 Jun; 50(6):497-503. PubMed ID: 15183279 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of an improved method to screen semiochemicals of insect. Li C; Cao J; Wang X; Xu P; Wang X; Ren G PeerJ; 2021; 9():e11510. PubMed ID: 34055498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]