BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 30825186)

  • 1. Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells.
    Zhang L; Bouadjel K; Manoury B; Vandecasteele G; Fischmeister R; Leblais V
    Br J Pharmacol; 2019 Jun; 176(11):1780-1792. PubMed ID: 30825186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells.
    Mercapide J; Santiago E; Alberdi E; Martinez-Irujo JJ
    Biochem Pharmacol; 1999 Nov; 58(10):1675-83. PubMed ID: 10535760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro.
    Wallis RM; Corbin JD; Francis SH; Ellis P
    Am J Cardiol; 1999 Mar; 83(5A):3C-12C. PubMed ID: 10078537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct phosphodiesterase 5A-containing compartments allow selective regulation of cGMP-dependent signalling in human arterial smooth muscle cells.
    Wilson LS; Guo M; Umana MB; Maurice DH
    Cell Signal; 2017 Aug; 36():204-211. PubMed ID: 28506928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Adrenergic cAMP signals are predominantly regulated by phosphodiesterase type 4 in cultured adult rat aortic smooth muscle cells.
    Zhai K; Hubert F; Nicolas V; Ji G; Fischmeister R; Leblais V
    PLoS One; 2012; 7(10):e47826. PubMed ID: 23094097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure.
    Kamel R; Leroy J; Vandecasteele G; Fischmeister R
    Nat Rev Cardiol; 2023 Feb; 20(2):90-108. PubMed ID: 36050457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes.
    Castro LR; Verde I; Cooper DM; Fischmeister R
    Circulation; 2006 May; 113(18):2221-8. PubMed ID: 16651469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in phosphodiesterase activity in the developing rat submandibular gland.
    Tanaka S; Shimooka S; Shimomura H
    Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Phosphodiesterase 1 in the Regulation of Real-Time cGMP Levels and Contractility in Adult Mouse Cardiomyocytes.
    Bork NI; Subramanian H; Kurelic R; Nikolaev VO; Rybalkin SD
    Cells; 2023 Dec; 12(23):. PubMed ID: 38067187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotide hydrolysis in bovine aortic endothelial cells in culture: differential regulation in cobblestone and spindle phenotypes.
    Keravis T; Komas N; Lugnier C
    J Vasc Res; 2000; 37(4):235-49. PubMed ID: 10965223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective.
    Bobin P; Belacel-Ouari M; Bedioune I; Zhang L; Leroy J; Leblais V; Fischmeister R; Vandecasteele G
    Arch Cardiovasc Dis; 2016; 109(6-7):431-43. PubMed ID: 27184830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of cyclic nucleotide phosphodiesterase isoforms in the media layer of the main pulmonary artery.
    Pauvert O; Salvail D; Rousseau E; Lugnier C; Marthan R; Savineau JP
    Biochem Pharmacol; 2002 May; 63(9):1763-72. PubMed ID: 12007579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme assays for cGMP hydrolyzing phosphodiesterases.
    Rybalkin SD; Hinds TR; Beavo JA
    Methods Mol Biol; 2013; 1020():51-62. PubMed ID: 23709025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil.
    Saenz de Tejada I; Angulo J; Cuevas P; Fernández A; Moncada I; Allona A; Lledó E; Körschen HG; Niewöhner U; Haning H; Pages E; Bischoff E
    Int J Impot Res; 2001 Oct; 13(5):282-90. PubMed ID: 11890515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3'5' guanosine monophosphate accumulation in retinal pigment epithelium cells.
    Diederen RM; La Heij EC; Markerink-van Ittersum M; Kijlstra A; Hendrikse F; de Vente J
    Br J Ophthalmol; 2007 Mar; 91(3):379-84. PubMed ID: 16943225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons.
    Hepp R; Tricoire L; Hu E; Gervasi N; Paupardin-Tritsch D; Lambolez B; Vincent P
    J Neurochem; 2007 Sep; 102(6):1875-1886. PubMed ID: 17561940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network.
    Zhao CY; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2016 Feb; 91():215-27. PubMed ID: 26773602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (Type 5) by sildenafil and related compounds.
    Turko IV; Ballard SA; Francis SH; Corbin JD
    Mol Pharmacol; 1999 Jul; 56(1):124-30. PubMed ID: 10385692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic expression of bovine type 5 phosphodiesterase confers a renal phenotype in Drosophila.
    Broderick KE; Kean L; Dow JA; Pyne NJ; Davies SA
    J Biol Chem; 2004 Feb; 279(9):8159-68. PubMed ID: 14662775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.