These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 30825303)
1. Enhancing the prediction of disease-gene associations with multimodal deep learning. Luo P; Li Y; Tian LP; Wu FX Bioinformatics; 2019 Oct; 35(19):3735-3742. PubMed ID: 30825303 [TBL] [Abstract][Full Text] [Related]
2. deepNF: deep network fusion for protein function prediction. Gligorijevic V; Barot M; Bonneau R Bioinformatics; 2018 Nov; 34(22):3873-3881. PubMed ID: 29868758 [TBL] [Abstract][Full Text] [Related]
3. A multimodal deep learning framework for predicting drug-drug interaction events. Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508 [TBL] [Abstract][Full Text] [Related]
4. Pancancer survival prediction using a deep learning architecture with multimodal representation and integration. Fan Z; Jiang Z; Liang H; Han C Bioinform Adv; 2023; 3(1):vbad006. PubMed ID: 36845202 [TBL] [Abstract][Full Text] [Related]
5. Transfer learning across ontologies for phenome-genome association prediction. Petegrosso R; Park S; Hwang TH; Kuang R Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759 [TBL] [Abstract][Full Text] [Related]
6. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations. Smaili FZ; Gao X; Hoehndorf R Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999 [TBL] [Abstract][Full Text] [Related]
7. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network. Wang L; You ZH; Huang YA; Huang DS; Chan KCC Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982 [TBL] [Abstract][Full Text] [Related]
8. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Kulmanov M; Khan MA; Hoehndorf R; Wren J Bioinformatics; 2018 Feb; 34(4):660-668. PubMed ID: 29028931 [TBL] [Abstract][Full Text] [Related]
9. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach. Liang M; Li Z; Chen T; Zeng J IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):928-37. PubMed ID: 26357333 [TBL] [Abstract][Full Text] [Related]
10. Feature selection may improve deep neural networks for the bioinformatics problems. Chen Z; Pang M; Zhao Z; Li S; Miao R; Zhang Y; Feng X; Feng X; Zhang Y; Duan M; Huang L; Zhou F Bioinformatics; 2020 Mar; 36(5):1542-1552. PubMed ID: 31591638 [TBL] [Abstract][Full Text] [Related]
11. SG-LSTM-FRAME: a computational frame using sequence and geometrical information via LSTM to predict miRNA-gene associations. Xie W; Luo J; Pan C; Liu Y Brief Bioinform; 2021 Mar; 22(2):2032-2042. PubMed ID: 32181478 [TBL] [Abstract][Full Text] [Related]
12. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations. Liu L; Mamitsuka H; Zhu S Bioinformatics; 2022 Jan; 38(3):799-808. PubMed ID: 34672333 [TBL] [Abstract][Full Text] [Related]
13. PFresGO: an attention mechanism-based deep-learning approach for protein annotation by integrating gene ontology inter-relationships. Pan T; Li C; Bi Y; Wang Z; Gasser RB; Purcell AW; Akutsu T; Webb GI; Imoto S; Song J Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36794913 [TBL] [Abstract][Full Text] [Related]
14. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical deep learning for predicting GO annotations by integrating protein knowledge. Merino GA; Saidi R; Milone DH; Stegmayer G; Martin MJ Bioinformatics; 2022 Sep; 38(19):4488-4496. PubMed ID: 35929781 [TBL] [Abstract][Full Text] [Related]
16. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks. Zhang H; Liang Y; Peng C; Han S; Du W; Li Y Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239 [TBL] [Abstract][Full Text] [Related]
17. Graph convolution for predicting associations between miRNA and drug resistance. Huang YA; Hu P; Chan KCC; You ZH Bioinformatics; 2020 Feb; 36(3):851-858. PubMed ID: 31397851 [TBL] [Abstract][Full Text] [Related]
18. CAMR: cross-aligned multimodal representation learning for cancer survival prediction. Wu X; Shi Y; Wang M; Li A Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637188 [TBL] [Abstract][Full Text] [Related]
19. Off-target predictions in CRISPR-Cas9 gene editing using deep learning. Lin J; Wong KC Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072 [TBL] [Abstract][Full Text] [Related]
20. Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations. Deng L; Huang Y; Liu X; Liu H Bioinformatics; 2022 Jan; 38(4):1118-1125. PubMed ID: 34864873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]