These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30825303)

  • 21. Exploiting ontology graph for predicting sparsely annotated gene function.
    Wang S; Cho H; Zhai C; Berger B; Peng J
    Bioinformatics; 2015 Jun; 31(12):i357-64. PubMed ID: 26072504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations.
    Deng L; Huang Y; Liu X; Liu H
    Bioinformatics; 2022 Jan; 38(4):1118-1125. PubMed ID: 34864873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring generative deep learning for omics data using log-linear models.
    Hess M; Hackenberg M; Binder H
    Bioinformatics; 2020 Dec; 36(20):5045-5053. PubMed ID: 32647888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
    Ieremie I; Ewing RM; Niranjan M
    Bioinformatics; 2022 Apr; 38(8):2269-2277. PubMed ID: 35176146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepIsoFun: a deep domain adaptation approach to predict isoform functions.
    Shaw D; Chen H; Jiang T
    Bioinformatics; 2019 Aug; 35(15):2535-2544. PubMed ID: 30535380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using deep learning to associate human genes with age-related diseases.
    Fabris F; Palmer D; Salama KM; de Magalhães JP; Freitas AA
    Bioinformatics; 2020 Apr; 36(7):2202-2208. PubMed ID: 31845988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of potential disease-associated microRNAs using structural perturbation method.
    Zeng X; Liu L; Lü L; Zou Q
    Bioinformatics; 2018 Jul; 34(14):2425-2432. PubMed ID: 29490018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving protein function prediction using protein sequence and GO-term similarities.
    Makrodimitris S; van Ham RCHJ; Reinders MJT
    Bioinformatics; 2019 Apr; 35(7):1116-1124. PubMed ID: 30169569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effusion: prediction of protein function from sequence similarity networks.
    Yunes JM; Babbitt PC
    Bioinformatics; 2019 Feb; 35(3):442-451. PubMed ID: 30084920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HPOLabeler: improving prediction of human protein-phenotype associations by learning to rank.
    Liu L; Huang X; Mamitsuka H; Zhu S
    Bioinformatics; 2020 Aug; 36(14):4180-4188. PubMed ID: 32379868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GNE: a deep learning framework for gene network inference by aggregating biological information.
    Kc K; Li R; Cui F; Yu Q; Haake AR
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):38. PubMed ID: 30953525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations.
    Fu G; Wang J; Domeniconi C; Yu G
    Bioinformatics; 2018 May; 34(9):1529-1537. PubMed ID: 29228285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Collaborative Filtering for Prediction of Disease Genes.
    Zeng X; Lin Y; He Y; Lu L; Min X; Rodriguez-Paton A
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1639-1647. PubMed ID: 30932845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepPhos: prediction of protein phosphorylation sites with deep learning.
    Luo F; Wang M; Liu Y; Zhao XM; Li A
    Bioinformatics; 2019 Aug; 35(16):2766-2773. PubMed ID: 30601936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DIFFUSE: predicting isoform functions from sequences and expression profiles via deep learning.
    Chen H; Shaw D; Zeng J; Bu D; Jiang T
    Bioinformatics; 2019 Jul; 35(14):i284-i294. PubMed ID: 31510699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep graph representations embed network information for robust disease marker identification.
    Maddouri O; Qian X; Yoon BJ
    Bioinformatics; 2022 Jan; 38(4):1075-1086. PubMed ID: 34788368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting protein-protein interactions through sequence-based deep learning.
    Hashemifar S; Neyshabur B; Khan AA; Xu J
    Bioinformatics; 2018 Sep; 34(17):i802-i810. PubMed ID: 30423091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.