BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30825314)

  • 1. Structural biology of plant sulfur metabolism: from sulfate to glutathione.
    Jez JM
    J Exp Bot; 2019 Aug; 70(16):4089-4103. PubMed ID: 30825314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants.
    Mendoza-Cózatl D; Loza-Tavera H; Hernández-Navarro A; Moreno-Sánchez R
    FEMS Microbiol Rev; 2005 Sep; 29(4):653-71. PubMed ID: 16102596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of thiol contents in plants.
    Höfgen R; Kreft O; Willmitzer L; Hesse H
    Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural biology and regulation of the plant sulfation pathway.
    Jez JM; Ravilious GE; Herrmann J
    Chem Biol Interact; 2016 Nov; 259(Pt A):31-38. PubMed ID: 26926807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of sulfate uptake and assimilation--the same or not the same?
    Davidian JC; Kopriva S
    Mol Plant; 2010 Mar; 3(2):314-25. PubMed ID: 20139159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural biology of plant sulfur metabolism: from assimilation to biosynthesis.
    Ravilious GE; Jez JM
    Nat Prod Rep; 2012 Oct; 29(10):1138-52. PubMed ID: 22610545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism.
    Yi H; Galant A; Ravilious GE; Preuss ML; Jez JM
    Mol Plant; 2010 Mar; 3(2):269-79. PubMed ID: 20080815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants.
    Selles B; Moseler A; Rouhier N; Couturier J
    J Exp Bot; 2019 Aug; 70(16):4139-4154. PubMed ID: 31055601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants.
    Noji M; Saito K
    Amino Acids; 2002; 22(3):231-43. PubMed ID: 12083067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR.
    Scheerer U; Haensch R; Mendel RR; Kopriva S; Rennenberg H; Herschbach C
    J Exp Bot; 2010; 61(2):609-22. PubMed ID: 19923196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine.
    Bolchi A; Petrucco S; Tenca PL; Foroni C; Ottonello S
    Plant Mol Biol; 1999 Feb; 39(3):527-37. PubMed ID: 10092180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of 5'-adenylylsulfate reductase in controlling sulfate reduction in plants.
    Martin MN; Tarczynski MC; Shen B; Leustek T
    Photosynth Res; 2005 Dec; 86(3):309-23. PubMed ID: 16328785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes.
    Takahashi H; Kopriva S; Giordano M; Saito K; Hell R
    Annu Rev Plant Biol; 2011; 62():157-84. PubMed ID: 21370978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of sulfur partitioning between primary and secondary metabolism.
    Mugford SG; Lee BR; Koprivova A; Matthewman C; Kopriva S
    Plant J; 2011 Jan; 65(1):96-105. PubMed ID: 21175893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
    Kurmanbayeva A; Brychkova G; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M
    Methods Mol Biol; 2017; 1631():253-271. PubMed ID: 28735402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.
    Krueger S; Donath A; Lopez-Martin MC; Hoefgen R; Gotor C; Hesse H
    Amino Acids; 2010 Oct; 39(4):1029-42. PubMed ID: 20379751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Plant sulfate assimilation and regulation of the activity of related enzymes under cadmium stress].
    Sun XM; Yang ZM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):9-16. PubMed ID: 16477125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced glutathione metabolism is correlated with sulfur-induced resistance in Tobacco mosaic virus-infected genetically susceptible Nicotiana tabacum plants.
    Höller K; Király L; Künstler A; Müller M; Gullner G; Fattinger M; Zechmann B
    Mol Plant Microbe Interact; 2010 Nov; 23(11):1448-59. PubMed ID: 20923352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur Partitioning between Glutathione and Protein Synthesis Determines Plant Growth.
    Speiser A; Silbermann M; Dong Y; Haberland S; Uslu VV; Wang S; Bangash SAK; Reichelt M; Meyer AJ; Wirtz M; Hell R
    Plant Physiol; 2018 Jul; 177(3):927-937. PubMed ID: 29752309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco.
    Wirtz M; Hell R
    Plant Cell; 2007 Feb; 19(2):625-39. PubMed ID: 17293569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.