BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30825403)

  • 1. A Peptide-Induced Self-Cleavage Reaction Initiates the Activation of Tyrosinase.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Angew Chem Int Ed Engl; 2019 May; 58(22):7475-7479. PubMed ID: 30825403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol oxidases.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Sci Rep; 2017 Aug; 7(1):8860. PubMed ID: 28821733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity.
    Kampatsikas I; Bijelic A; Pretzler M; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2017 Aug; 73(Pt 8):491-499. PubMed ID: 28777094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.
    Molitor C; Mauracher SG; Rompel A
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1806-15. PubMed ID: 26976571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent and active aurone synthase from petals of C. grandiflora: a polyphenol oxidase with unique characteristics.
    Molitor C; Mauracher SG; Pargan S; Mayer RL; Halbwirth H; Rompel A
    Planta; 2015 Sep; 242(3):519-37. PubMed ID: 25697287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora.
    Molitor C; Mauracher SG; Rompel A
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):746-51. PubMed ID: 26057806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji).
    Liu F; Zhao JH; Gan ZL; Ni YY
    Food Chem; 2015 Apr; 173():86-91. PubMed ID: 25465998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type-3 copper proteins: recent advances on polyphenol oxidases.
    Kaintz C; Mauracher SG; Rompel A
    Adv Protein Chem Struct Biol; 2014; 97():1-35. PubMed ID: 25458353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase.
    Faccio G; Arvas M; Thöny-Meyer L; Saloheimo M
    J Inorg Biochem; 2013 Apr; 121():37-45. PubMed ID: 23333757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of MRM methods to quantify protein isoforms of polyphenol oxidase in loquat fruits.
    Martínez-Márquez A; Morante-Carriel J; Sellés-Marchart S; Martínez-Esteso MJ; Pineda-Lucas JL; Luque I; Bru-Martínez R
    J Proteome Res; 2013 Dec; 12(12):5709-22. PubMed ID: 24245590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometric identification of the trypsin cleavage pathway in lysyl-proline containing oligotuftsin peptides.
    Manea M; Mezo G; Hudecz F; Przybylski M
    J Pept Sci; 2007 Apr; 13(4):227-36. PubMed ID: 17394121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and structural characterization of tomato polyphenol oxidases provide novel insights into their substrate specificity.
    Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2019 Mar; 9(1):4022. PubMed ID: 30858490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis around the CuA site of a polyphenol oxidase from Coreopsis grandiflora (cgAUS1).
    Kaintz C; Mayer RL; Jirsa F; Halbwirth H; Rompel A
    FEBS Lett; 2015 Mar; 589(7):789-97. PubMed ID: 25697959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of a tetrameric dandelion polyphenol oxidase (PPO-6) reveals the site of subunit interaction.
    Dirks-Hofmeister ME; Inlow JK; Moerschbacher BM
    Plant Mol Biol; 2012 Sep; 80(2):203-17. PubMed ID: 22814940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic, spectroscopic, and molecular docking studies on the inhibition of membrane-bound polyphenol oxidase from Granny Smith apples (Malus domestica Borkh.).
    Han QY; Liu F; Wen X; Ni YY
    Food Chem; 2021 Feb; 338():127928. PubMed ID: 32919374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies.
    Nikolaivits E; Valmas A; Dedes G; Topakas E; Dimarogona M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae.
    Hakulinen N; Gasparetti C; Kaljunen H; Kruus K; Rouvinen J
    J Biol Inorg Chem; 2013 Dec; 18(8):917-29. PubMed ID: 24043469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.).
    Derardja AE; Pretzler M; Kampatsikas I; Barkat M; Rompel A
    J Agric Food Chem; 2017 Sep; 65(37):8203-8212. PubMed ID: 28812349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.