BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30825460)

  • 21. Optimization of secondary drying condition for desired residual water content in a lyophilized product using a novel simulation program for pharmaceutical lyophilization.
    Kodama T; Takeuchi M; Wakiyama N; Terada K
    Int J Pharm; 2014 Jul; 469(1):59-66. PubMed ID: 24751732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A non-invasive multipoint product temperature measurement for pharmaceutical lyophilization.
    Jiang X; Kazarin P; Sinanis MD; Darwish A; Raghunathan N; Alexeenko A; Peroulis D
    Sci Rep; 2022 Jul; 12(1):12010. PubMed ID: 35835977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy transfer during freeze-drying in dual-chamber cartridges.
    Korpus C; Haase T; Sönnichsen C; Friess W
    J Pharm Sci; 2015 May; 104(5):1750-8. PubMed ID: 25712903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining Maximum Sublimation Rate for a Production Lyophilizer: Computational Modeling and Comparison With Ice Slab Tests.
    Kshirsagar V; Tchessalov S; Kanka F; Hiebert D; Alexeenko A
    J Pharm Sci; 2019 Jan; 108(1):382-390. PubMed ID: 30414868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of loading process on product collapse during large-scale lyophilization.
    Wallen AJ; Van Ocker SH; Sinacola JR; Phillips BR
    J Pharm Sci; 2009 Mar; 98(3):997-1004. PubMed ID: 18661543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-Point Wireless Temperature Sensing System for Monitoring Pharmaceutical Lyophilization.
    Jiang X; Zhu T; Kodama T; Raghunathan N; Alexeenko A; Peroulis D
    Front Chem; 2018; 6():288. PubMed ID: 30065924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals.
    Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C
    Adv Food Nutr Res; 2020; 93():1-58. PubMed ID: 32711860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A procedure to optimize scale-up for the primary drying phase of lyophilization.
    Kramer T; Kremer DM; Pikal MJ; Petre WJ; Shalaev EY; Gatlin LA
    J Pharm Sci; 2009 Jan; 98(1):307-18. PubMed ID: 18506820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization.
    Milton N; Pikal MJ; Roy ML; Nail SL
    PDA J Pharm Sci Technol; 1997; 51(1):7-16. PubMed ID: 9099059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat Transfer Analysis of an Optimized, Flexible Holder System for Freeze-Drying in Dual Chamber Cartridges Using Different State-of-the-Art PAT Tools.
    Korpus C; Pikal M; Friess W
    J Pharm Sci; 2016 Nov; 105(11):3304-3313. PubMed ID: 27555046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A; Alexeenko AA; Schultz SG; Kim SG
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process.
    Giordano A; Barresi AA; Fissore D
    J Pharm Sci; 2011 Jan; 100(1):311-24. PubMed ID: 20575053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of freeze-drying cycles: The determination of heat transfer coefficient by using heat flux sensor and MicroFD.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2022 Jun; 621():121763. PubMed ID: 35472509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.