BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30825460)

  • 41. Experimental Aspects of Measuring the Vial Heat Transfer Coefficient in Pharmaceutical Freeze-Drying.
    Wegiel LA; Ferris SJ; Nail SL
    AAPS PharmSciTech; 2018 May; 19(4):1810-1817. PubMed ID: 29616490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.
    Fissore D
    J Pharm Sci; 2016 Dec; 105(12):3562-3572. PubMed ID: 27692619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.
    Tang XC; Nail SL; Pikal MJ
    Pharm Res; 2005 Apr; 22(4):685-700. PubMed ID: 15889467
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lyophilization process design space.
    Patel SM; Pikal MJ
    J Pharm Sci; 2013 Nov; 102(11):3883-7. PubMed ID: 23946165
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling the Secondary Drying Stage of Freeze Drying: Development and Validation of an Excel-Based Model.
    Sahni EK; Pikal MJ
    J Pharm Sci; 2017 Mar; 106(3):779-791. PubMed ID: 27914794
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination for dry layer resistance of sucrose under various primary drying conditions using a novel simulation program for designing pharmaceutical lyophilization cycle.
    Kodama T; Sawada H; Hosomi H; Takeuchi M; Wakiyama N; Yonemochi E; Terada K
    Int J Pharm; 2013 Aug; 452(1-2):180-7. PubMed ID: 23684561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of vial heat transfer coefficients during the primary and secondary drying stages of freeze-drying.
    Yoon K; Narsimhan V
    Int J Pharm; 2023 Mar; 635():122746. PubMed ID: 36812952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.
    Kuu WY; O'Bryan KR; Hardwick LM; Paul TW
    Pharm Dev Technol; 2011 Aug; 16(4):343-57. PubMed ID: 20387998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2006 Apr; 313(1-2):99-113. PubMed ID: 16513303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.
    Goshima H; Do G; Nakagawa K
    J Pharm Sci; 2016 Jun; 105(6):1920-1933. PubMed ID: 27238489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lyophilization cycle design for highly concentrated protein formulations supported by micro freeze-dryer and heat flux sensor.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2023 Aug; 643():123285. PubMed ID: 37532010
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative rates of freeze-drying for lactose and sucrose solutions as measured by photographic recording, product temperature, and heat flux transducer.
    Chen R; Slater NK; Gatlin LA; Kramer T; Shalaev EY
    Pharm Dev Technol; 2008; 13(5):367-74. PubMed ID: 18720233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Principles of Freeze-Drying and Application of Analytical Technologies.
    Ward KR; Matejtschuk P
    Methods Mol Biol; 2021; 2180():99-127. PubMed ID: 32797409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vial Wall Effect on Freeze-Drying Speed.
    Ramšak M; Hriberšek M
    J Pharm Sci; 2024 May; 113(5):1275-1284. PubMed ID: 38070773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of freeze-dryer design on drying rate of an amorphous protein-formulation determined with a gravimetric technique.
    Gieseler H; Lee G
    Pharm Dev Technol; 2008; 13(6):463-72. PubMed ID: 18821271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formulation Screening and Freeze-Drying Process Optimization of Ginkgolide B Lyophilized Powder for Injection.
    Liu D; Galvanin F; Yu Y
    AAPS PharmSciTech; 2018 Feb; 19(2):541-550. PubMed ID: 28849380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor.
    Roy ML; Pikal MJ
    J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.