These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30825770)

  • 1. Novel feature-based visualization of the unsteady blood flow in intracranial aneurysms with the help of proper orthogonal decomposition (POD).
    Janiga G
    Comput Med Imaging Graph; 2019 Apr; 73():30-38. PubMed ID: 30825770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative assessment of 4D hemodynamics in cerebral aneurysms using proper orthogonal decomposition.
    Janiga G
    J Biomech; 2019 Jan; 82():80-86. PubMed ID: 30409473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.
    Bakhshinejad A; Baghaie A; Vali A; Saloner D; Rayz VL; D'Souza RM
    J Biomech; 2017 Jun; 58():162-173. PubMed ID: 28577904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow visualization of recurrent aneurysms after coil embolization by 3D phase-contrast MRI.
    Kono K; Terada T
    Acta Neurochir (Wien); 2014 Nov; 156(11):2035-40. PubMed ID: 25257134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance fluid dynamics for intracranial aneurysms--comparison with computed fluid dynamics.
    Naito T; Miyachi S; Matsubara N; Isoda H; Izumi T; Haraguchi K; Takahashi I; Ishii K; Wakabayashi T
    Acta Neurochir (Wien); 2012 Jun; 154(6):993-1001. PubMed ID: 22392013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm.
    van Ooij P; Potters WV; Guédon A; Schneiders JJ; Marquering HA; Majoie CB; vanBavel E; Nederveen AJ
    J Magn Reson Imaging; 2013 Oct; 38(4):876-84. PubMed ID: 23417769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics.
    van Ooij P; Guédon A; Poelma C; Schneiders J; Rutten MC; Marquering HA; Majoie CB; VanBavel E; Nederveen AJ
    NMR Biomed; 2012 Jan; 25(1):14-26. PubMed ID: 21480417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data.
    Rutkowski DR; Roldán-Alzate A; Johnson KM
    Sci Rep; 2021 May; 11(1):10240. PubMed ID: 33986368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denoising and spatial resolution enhancement of 4D flow MRI using proper orthogonal decomposition and lasso regularization.
    Fathi MF; Bakhshinejad A; Baghaie A; Saloner D; Sacho RH; Rayz VL; D'Souza RM
    Comput Med Imaging Graph; 2018 Dec; 70():165-172. PubMed ID: 30423501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review.
    Szajer J; Ho-Shon K
    Magn Reson Imaging; 2018 May; 48():62-69. PubMed ID: 29223732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Hemodynamic Analysis for the Diagnosis of Atherosclerotic Changes in Intracranial Aneurysms: A Proof-of-Concept Study Using 3 Cases Harboring Atherosclerotic and Nonatherosclerotic Aneurysms Simultaneously.
    Sugiyama SI; Endo H; Niizuma K; Endo T; Funamoto K; Ohta M; Tominaga T
    Comput Math Methods Med; 2016; 2016():2386031. PubMed ID: 27703491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment.
    Pereira VM; Brina O; Marcos Gonzales A; Narata AP; Bijlenga P; Schaller K; Lovblad KO; Ouared R
    J Biomech; 2013 May; 46(9):1531-9. PubMed ID: 23602597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery.
    Sugiyama S; Meng H; Funamoto K; Inoue T; Fujimura M; Nakayama T; Omodaka S; Shimizu H; Takahashi A; Tominaga T
    World Neurosurg; 2012 Nov; 78(5):462-8. PubMed ID: 22120259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability.
    Sarrami-Foroushani A; Lassila T; Gooya A; Geers AJ; Frangi AF
    J Biomech; 2016 Dec; 49(16):3815-3823. PubMed ID: 28573970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions.
    Evju Ø; Valen-Sendstad K; Mardal KA
    J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimizing the blood velocity differences between phase-contrast magnetic resonance imaging and computational fluid dynamics simulation in cerebral arteries and aneurysms.
    Mohd Adib MAH; Ii S; Watanabe Y; Wada S
    Med Biol Eng Comput; 2017 Sep; 55(9):1605-1619. PubMed ID: 28161877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.