These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 30825780)

  • 21. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India.
    Arora A; Arabameri A; Pandey M; Siddiqui MA; Shukla UK; Bui DT; Mishra VN; Bhardwaj A
    Sci Total Environ; 2021 Jan; 750():141565. PubMed ID: 32882492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Applicability of mixed effect model in the prediction of forest fire].
    Zhang Z; Yang S; Zhu H; Wang GY; Guo FT; Sun SC
    Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1547-1554. PubMed ID: 35729132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [A review of models of forest fire occurrence prediction in China].
    Gao C; Lin HL; Hu HQ; Song H
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3227-3240. PubMed ID: 33345524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm.
    Wang Y; Hong H; Chen W; Li S; Panahi M; Khosravi K; Shirzadi A; Shahabi H; Panahi S; Costache R
    J Environ Manage; 2019 Oct; 247():712-729. PubMed ID: 31279803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS.
    Golkarian A; Naghibi SA; Kalantar B; Pradhan B
    Environ Monit Assess; 2018 Feb; 190(3):149. PubMed ID: 29455381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.
    Ließ M; Schmidt J; Glaser B
    PLoS One; 2016; 11(4):e0153673. PubMed ID: 27128736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania.
    Costache R; Tien Bui D
    Sci Total Environ; 2019 Nov; 691():1098-1118. PubMed ID: 31466192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction.
    Dodangeh E; Choubin B; Eigdir AN; Nabipour N; Panahi M; Shamshirband S; Mosavi A
    Sci Total Environ; 2020 Feb; 705():135983. PubMed ID: 31841902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing wildfire impact on Trigonella elliptica habitat using random forest modeling.
    Moradi E; Tavili A; Darabi H; Muchová Z
    J Environ Manage; 2024 Feb; 353():120209. PubMed ID: 38295633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.
    Terrier A; Girardin MP; Périé C; Legendre P; Bergeron Y
    Ecol Appl; 2013 Jan; 23(1):21-35. PubMed ID: 23495633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms.
    Razavi Termeh SV; Kornejady A; Pourghasemi HR; Keesstra S
    Sci Total Environ; 2018 Feb; 615():438-451. PubMed ID: 28988080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mangrove forest classification and aboveground biomass estimation using an atom search algorithm and adaptive neuro-fuzzy inference system.
    Pham MH; Do TH; Pham VM; Bui QT
    PLoS One; 2020; 15(5):e0233110. PubMed ID: 32437456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding land degradation induced by gully erosion from the perspective of different geoenvironmental factors.
    Jaafari A; Janizadeh S; Abdo HG; Mafi-Gholami D; Adeli B
    J Environ Manage; 2022 Aug; 315():115181. PubMed ID: 35500480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forest fire monitoring
    Zheng S; Gao P; Zou X; Wang W
    Front Plant Sci; 2022; 13():954757. PubMed ID: 36325548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the multidimensional effects of human activity and land cover on fire occurrence for territorial planning.
    Carrasco J; Acuna M; Miranda A; Alfaro G; Pais C; Weintraub A
    J Environ Manage; 2021 Nov; 297():113428. PubMed ID: 34375228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Forest fire risk assessment for China under different climate scenarios.].
    Tian XR; Dai X; Wang MY; Zhao FJ; Shu LF
    Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):769-776. PubMed ID: 29726181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of how the spatial and temporal patterns of fire and their bioclimatic and anthropogenic drivers vary across the Amazon rainforest in El Niño and non-El Niño years.
    Singh M; Zhu X
    PeerJ; 2021; 9():e12029. PubMed ID: 34707922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
    Saglam B; Bilgili E; Dincdurmaz B; Kadiogulari AI; Kücük Ö
    Sensors (Basel); 2008 Jun; 8(6):3970-3987. PubMed ID: 27879918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing angle crashes at unsignalized intersections using machine learning techniques.
    Abdel-Aty M; Haleem K
    Accid Anal Prev; 2011 Jan; 43(1):461-70. PubMed ID: 21094345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.