These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30825827)

  • 1. Optimisation of the production of fermentable monosaccharides from algal biomass grown in photobioreactors treating wastewater.
    Martín-Juárez J; Vega-Alegre M; Riol-Pastor E; Muñoz-Torre R; Bolado-Rodríguez S
    Bioresour Technol; 2019 Jun; 281():239-249. PubMed ID: 30825827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of pretreatments for solubilisation of components and recovery of fermentable monosaccharides from microalgae biomass grown in piggery wastewater.
    Martin Juárez J; Martínez-Páramo S; Maté-González M; García Encina PA; Muñoz Torre R; Bolado Rodríguez S
    Chemosphere; 2021 Apr; 268():129330. PubMed ID: 33359992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of process parameters on the valorization of components from microalgal and microalgal-bacteria biomass by enzymatic hydrolysis.
    Rojo EM; Piedra I; González AM; Vega M; Bolado S
    Bioresour Technol; 2021 Sep; 335():125256. PubMed ID: 33991882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.
    Lee OK; Oh YK; Lee EY
    Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agricultural products from algal biomass grown in piggery wastewater: A techno-economic analysis.
    Rojo EM; Molinos-Senante M; Filipigh AA; Lafarga T; Fernández FGA; Bolado S
    Sci Total Environ; 2023 Aug; 887():164159. PubMed ID: 37187395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.
    Cara C; Ruiz E; Oliva JM; Sáez F; Castro E
    Bioresour Technol; 2008 Apr; 99(6):1869-76. PubMed ID: 17498947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors.
    García D; Posadas E; Blanco S; Acién G; García-Encina P; Bolado S; Muñoz R
    Bioresour Technol; 2018 Jan; 248(Pt B):120-126. PubMed ID: 28651871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone.
    González-Balderas RM; Velásquez-Orta SB; Valdez-Vazquez I; Orta Ledesma MT
    Ultrason Sonochem; 2020 Apr; 62():104852. PubMed ID: 31806557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentable sugars by chemical hydrolysis of biomass.
    Binder JB; Raines RT
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4516-21. PubMed ID: 20194793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pretreatment of fibrous biomass and growth of biosurfactant-producing Bacillus subtilis on biomass-derived fermentable sugars.
    Sharma R; Lamsal BP; Colonna WJ
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):105-13. PubMed ID: 26590967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Optimization of liquid ammonia treatment for enzymatic hydrolysis of Saccharum arundinaceum to fermentable sugars].
    Liu J; Peng H; Zhao X; Cheng C; Chen F; Shao Q
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):333-41. PubMed ID: 23789274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.
    Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S
    Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.
    Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY
    Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions.
    García D; Posadas E; Grajeda C; Blanco S; Martínez-Páramo S; Acién G; García-Encina P; Bolado S; Muñoz R
    Bioresour Technol; 2017 Dec; 245(Pt A):483-490. PubMed ID: 28898848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved methane yield from wastewater grown algal biomass.
    Thawani M; Hans N; Samuchiwal S; Prajapati SK
    Water Sci Technol; 2018 Aug; 78(1-2):81-91. PubMed ID: 30101791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment.
    Martín Juárez J; Lorenzo Hernando A; Muñoz Torre R; Blanco Lanza S; Bolado Rodríguez S
    Bioresour Technol; 2016 Oct; 218():265-71. PubMed ID: 27372005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.
    Krustok I; Truu J; Odlare M; Truu M; Ligi T; Tiirik K; Nehrenheim E
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6537-49. PubMed ID: 25895091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of fermentative hydrogen production from Spirogyra sp. by increased carbohydrate accumulation and selection of the biomass pretreatment under a biorefinery model.
    Pinto T; Gouveia L; Ortigueira J; Saratale GD; Moura P
    J Biosci Bioeng; 2018 Aug; 126(2):226-234. PubMed ID: 29580783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea.
    Sunwoo IY; Nguyen TH; Sukwong P; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2018 Mar; 28(3):401-408. PubMed ID: 29212293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.
    Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ
    Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.