These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 30825828)
1. Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based - flocculants: Effect on harvesting efficiency, water recovery and algal cell morphology. Shurair M; Almomani F; Bhosale R; Khraisheh M; Qiblawey H Bioresour Technol; 2019 Jun; 281():250-259. PubMed ID: 30825828 [TBL] [Abstract][Full Text] [Related]
2. Experimental studies on zeta potential of flocculants for harvesting of algae. Pandey A; Pathak VV; Kothari R; Black PN; Tyagi VV J Environ Manage; 2019 Feb; 231():562-569. PubMed ID: 30388653 [TBL] [Abstract][Full Text] [Related]
3. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Lama S; Muylaert K; Karki TB; Foubert I; Henderson RK; Vandamme D Bioresour Technol; 2016 Nov; 220():464-470. PubMed ID: 27611030 [TBL] [Abstract][Full Text] [Related]
4. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae. Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233 [TBL] [Abstract][Full Text] [Related]
5. Effective harvesting of microalgae: Comparison of different polymeric flocculants. Gerchman Y; Vasker B; Tavasi M; Mishael Y; Kinel-Tahan Y; Yehoshua Y Bioresour Technol; 2017 Mar; 228():141-146. PubMed ID: 28061396 [TBL] [Abstract][Full Text] [Related]
7. A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: Dual flocculation between cationic surfactants and bio-polymer. Taghavijeloudar M; Yaqoubnejad P; Ahangar AK; Rezania S Sci Total Environ; 2023 Jan; 854():158717. PubMed ID: 36108873 [TBL] [Abstract][Full Text] [Related]
8. Potential of biogenic and non-biogenic waste materials as flocculant for algal biomass harvesting: Mechanism, parameters, challenges and future prospects. Singh HM; Sharma M; Tyagi VV; Goria K; Buddhi D; Sharma A; Bruno F; Sheoran S; Kothari R J Environ Manage; 2023 Jul; 337():117591. PubMed ID: 36996549 [TBL] [Abstract][Full Text] [Related]
9. Cationic starch: Safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. El-Naggar ME; Samhan FA; Salama AAA; Hamdy RM; Ali GH Int J Biol Macromol; 2018 Sep; 116():1296-1303. PubMed ID: 29782981 [TBL] [Abstract][Full Text] [Related]
10. Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess. Lecina M; Nadal G; Solà C; Prat J; Cairó JJ Bioresour Technol; 2016 Sep; 216():211-8. PubMed ID: 27240237 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants. Ma X; Zheng H; Zhou W; Liu Y; Chen P; Ruan R Appl Biochem Biotechnol; 2016 Oct; 180(4):791-804. PubMed ID: 27206558 [TBL] [Abstract][Full Text] [Related]
12. Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans. 't Lam GP; Giraldo JB; Vermuë MH; Olivieri G; Eppink MH; Wijffels RH J Biotechnol; 2016 May; 225():10-7. PubMed ID: 27002231 [TBL] [Abstract][Full Text] [Related]
13. Single-step dynamic dewatering of microalgae from dilute suspensions using flocculant assisted filtration. Musa M; Ward A; Ayoko GA; Rösch C; Brown R; Rainey TJ Microb Cell Fact; 2020 Dec; 19(1):222. PubMed ID: 33276792 [TBL] [Abstract][Full Text] [Related]
14. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation. Zenooz AM; Ashtiani FZ; Ranjbar R; Nikbakht F; Bolouri O Prep Biochem Biotechnol; 2017 Jul; 47(6):570-577. PubMed ID: 28045608 [TBL] [Abstract][Full Text] [Related]
15. Dosage effect of cationic polymers on the flocculation efficiency of the marine microalga Neochloris oleoabundans. 't Lam GP; Zegeye EK; Vermuë MH; Kleinegris DM; Eppink MH; Wijffels RH; Olivieri G Bioresour Technol; 2015 Dec; 198():797-802. PubMed ID: 26454366 [TBL] [Abstract][Full Text] [Related]
16. Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production. Schlesinger A; Eisenstadt D; Bar-Gil A; Carmely H; Einbinder S; Gressel J Biotechnol Adv; 2012; 30(5):1023-30. PubMed ID: 22306161 [TBL] [Abstract][Full Text] [Related]
17. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Vandamme D; Eyley S; Van den Mooter G; Muylaert K; Thielemans W Bioresour Technol; 2015 Oct; 194():270-5. PubMed ID: 26210139 [TBL] [Abstract][Full Text] [Related]
18. Cationic polymers for successful flocculation of marine microalgae. 't Lam GP; Vermuë MH; Olivieri G; van den Broek LAM; Barbosa MJ; Eppink MHM; Wijffels RH; Kleinegris DMM Bioresour Technol; 2014 Oct; 169():804-807. PubMed ID: 25113884 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting. Labeeuw L; Commault AS; Kuzhiumparambil U; Emmerton B; Nguyen LN; Nghiem LD; Ralph PJ Sci Total Environ; 2021 Jan; 752():141708. PubMed ID: 32892040 [TBL] [Abstract][Full Text] [Related]
20. Estimation and evaluation of auto-flocculated algae harvesting efficiency using the population balance in turbulence model in flotation process. Kwak DH; Kim MS Water Sci Technol; 2018 Mar; 77(5-6):1165-1178. PubMed ID: 29528304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]