These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30825867)

  • 1. Ions-free electrochemically synthetized in aqueous media flake-like CuO nanostructures as SERS reproducible substrates for the detection of neurotransmitters.
    Proniewicz E; Tąta A; Starowicz M; Szkudlarek A; Pacek J; Molenda M; Kuśtrowski P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():24-33. PubMed ID: 30825867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological application of water-based electrochemically synthesized CuO leaf-like arrays: SERS response modulated by the positional isomerism and interface type.
    Proniewicz E; Vantasin S; Olszewski TK; Boduszek B; Ozaki Y
    Phys Chem Chem Phys; 2017 Dec; 19(47):31842-31855. PubMed ID: 29171610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic nanoparticles as effective sensors of bio-molecules.
    Proniewicz E
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122207. PubMed ID: 36502763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SERS/TERS Characterization of New Potential Therapeutics: The Influence of Positional Isomerism, Interface Type, Oxidation State of Copper, and Incubation Time on Adsorption on the Surface of Copper(I) and (II) Oxide Nanoparticles.
    Proniewicz E; Olszewski TK
    J Med Chem; 2022 Mar; 65(5):4387-4400. PubMed ID: 35230122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS activity and spectroscopic properties of Zn and ZnO nanostructures obtained by electrochemical and green chemistry methods for applications in biology and medicine.
    Proniewicz E; Tąta A; Wójcik A; Starowicz M; Pacek J; Molenda M
    Phys Chem Chem Phys; 2020 Dec; 22(48):28100-28114. PubMed ID: 33289732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous Pt nanostructures surface functionalized with phenylboronic acid phosphonic acid derivatives as potential biochemical nanosensors and drugs: SERS and TERS studies.
    Proniewicz E; Gralec B; Ozaki Y
    J Biomed Mater Res B Appl Biomater; 2023 Jun; 111(6):1197-1206. PubMed ID: 36715221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile fabrication of SERS arrays through galvanic replacement of silver onto electrochemically deposited copper micropatterns.
    Ke X; Lu B; Hao J; Zhang J; Qiao H; Zhang Z; Xing C; Yang W; Zhang B; Tang J
    Chemphyschem; 2012 Dec; 13(17):3786-9. PubMed ID: 23015311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A balsam pear-shaped CuO SERS substrate with highly chemical enhancement for pesticide residue detection.
    Liang P; Cao Y; Dong Q; Wang D; Zhang D; Jin S; Yu Z; Ye J; Zou M
    Mikrochim Acta; 2020 May; 187(6):335. PubMed ID: 32418132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces.
    de Carvalho DF; da Fonseca BG; Barbosa IL; Landi SM; de Sena LÁ; Archanjo BS; Sant'Ana AC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():108-13. PubMed ID: 23257336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
    Hossain MK; Kitahama Y; Huang GG; Han X; Ozaki Y
    Anal Bioanal Chem; 2009 Aug; 394(7):1747-60. PubMed ID: 19384546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential-dependent characterization of bombesin adsorbed states on roughened Ag, Au, and Cu electrode surfaces at physiological pH.
    Podstawka E; Niaura G
    J Phys Chem B; 2009 Aug; 113(31):10974-83. PubMed ID: 19601618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering.
    Lin CH; Jiang L; Chai YH; Xiao H; Chen SJ; Tsai HL
    Opt Express; 2009 Nov; 17(24):21581-9. PubMed ID: 19997399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Easy deposition of Ag onto polystyrene beads for developing surface-enhanced-Raman-scattering-based molecular sensors.
    Kim K; Lee HB; Park HK; Shin KS
    J Colloid Interface Sci; 2008 Feb; 318(2):195-201. PubMed ID: 18001760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the micro- and nanostructure in the performance of surface-enhanced Raman scattering substrates assembled from gold nanoparticles.
    Kuncicky DM; Christesen SD; Velev OD
    Appl Spectrosc; 2005 Apr; 59(4):401-9. PubMed ID: 15901324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement.
    Rahman MM; Khan SB; Marwani HM; Asiri AM; Alamry KA; Al-Youbi AO
    Talanta; 2013 Jan; 104():75-82. PubMed ID: 23597891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the Influence of Various Factors on the Character of Surface Functionalization of Copper(I) and Copper(II) Oxide Nanosensors with Phenylboronic Acid Derivatives.
    Proniewicz E; Starowicz M; Ozaki Y
    Langmuir; 2022 Jan; 38(1):557-568. PubMed ID: 34933549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine.
    Cao Q; Yuan K; Yu J; Delaunay JJ; Che R
    J Colloid Interface Sci; 2017 Mar; 490():23-28. PubMed ID: 27870955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of surface enhanced Raman scattering of IR-780 Iodide molecules using Au-Ag bimetallic nanostructures with blunt and sharp sprouts.
    Mahata T; Das GM; Dantham VR
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119262. PubMed ID: 33341743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.