BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30826056)

  • 1. Exploring the role of active site Mn
    Wang L; Yan F
    Biochem Biophys Res Commun; 2019 Apr; 511(3):612-618. PubMed ID: 30826056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deprotonation states of the two active site water molecules regulate the binding of protein phosphatase 5 with its substrate: A molecular dynamics study.
    Wang L; Yan F
    Protein Sci; 2017 Oct; 26(10):2010-2020. PubMed ID: 28726316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg
    Assis LC; de Castro AA; Prandi IG; Mancini DT; de Giacoppo JOS; Savedra RML; de Assis TM; Carregal JB; da Cunha EFF; Ramalho TC
    J Mol Model; 2018 Oct; 24(10):303. PubMed ID: 30280322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional basis of protein phosphatase 5 substrate specificity.
    Oberoi J; Dunn DM; Woodford MR; Mariotti L; Schulman J; Bourboulia D; Mollapour M; Vaughan CK
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9009-14. PubMed ID: 27466404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic mechanism of protein phosphatase 5 established by DFT calculations.
    Ribeiro AJ; Alberto ME; Ramos MJ; Fernandes PA; Russo N
    Chemistry; 2013 Oct; 19(42):14081-9. PubMed ID: 24014428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potential physiological activators of protein phosphatase 5.
    Ramsey AJ; Chinkers M
    Biochemistry; 2002 Apr; 41(17):5625-32. PubMed ID: 11969423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism.
    Haslbeck V; Drazic A; Eckl JM; Alte F; Helmuth M; Popowicz G; Schmidt W; Braun F; Weiwad M; Fischer G; Gemmecker G; Sattler M; Striggow F; Groll M; Richter K
    Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism.
    Hong TJ; Park K; Choi EW; Hahn JS
    Biochem Biophys Res Commun; 2017 Jan; 482(2):215-220. PubMed ID: 27840051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between protein phosphatase 5 and the A subunit of protein phosphatase 2A: evidence for a heterotrimeric form of protein phosphatase 5.
    Lubert EJ; Hong Y; Sarge KD
    J Biol Chem; 2001 Oct; 276(42):38582-7. PubMed ID: 11504734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5.
    Swingle MR; Honkanen RE; Ciszak EM
    J Biol Chem; 2004 Aug; 279(32):33992-9. PubMed ID: 15155720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of a third metal ion by the human phosphatases PP2Cα and Wip1 is required for phosphatase activity.
    Tanoue K; Miller Jenkins LM; Durell SR; Debnath S; Sakai H; Tagad HD; Ishida K; Appella E; Mazur SJ
    Biochemistry; 2013 Aug; 52(34):5830-43. PubMed ID: 23906386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity.
    Beaufils S; Grossmann JG; Renault A; Bolanos-Garcia VM
    J Phys Chem B; 2008 Jul; 112(27):7984-91. PubMed ID: 18547097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical models of catalytic domains of protein phosphatases 1 and 2A with Zn2+ and Mn2+ metal dications and putative bioligands in their catalytic centers.
    Woźniak-Celmer E; Ołdziej S; Ciarkowski J
    Acta Biochim Pol; 2001; 48(1):35-52. PubMed ID: 11440182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function of the co-chaperone protein phosphatase 5 in cancer.
    Sager RA; Dushukyan N; Woodford M; Mollapour M
    Cell Stress Chaperones; 2020 May; 25(3):383-394. PubMed ID: 32239474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5.
    Jeong JY; Johns J; Sinclair C; Park JM; Rossie S
    BMC Cell Biol; 2003 Mar; 4():3. PubMed ID: 12694636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rac GTPase signaling through the PP5 protein phosphatase.
    Gentile S; Darden T; Erxleben C; Romeo C; Russo A; Martin N; Rossie S; Armstrong DL
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5202-6. PubMed ID: 16549782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of new drug-like inhibitors for serine/threonine protein phosphatase 5 of Plasmodium falciparum: a docking and simulation study.
    Gupta S; Jadaun A; Kumar H; Raj U; Varadwaj PK; Rao AR
    J Biomol Struct Dyn; 2015; 33(11):2421-41. PubMed ID: 25967133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the antiferromagnetic MnIIMnII system within the protein phosphatase-5 catalytic site.
    Salter EA; Honkanen RE; Wierzbicki A
    J Mol Model; 2015 Jan; 21(1):14. PubMed ID: 25617208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galpha(12) and Galpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity.
    Yamaguchi Y; Katoh H; Mori K; Negishi M
    Curr Biol; 2002 Aug; 12(15):1353-8. PubMed ID: 12176367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.