BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30826292)

  • 1. Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives.
    Green KD; Fosso MY; Mayhoub AS; Garneau-Tsodikova S
    Bioorg Med Chem Lett; 2019 May; 29(9):1127-1132. PubMed ID: 30826292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloramphenicol is a substrate for a novel nitroreductase pathway in Haemophilus influenzae.
    Smith AL; Erwin AL; Kline T; Unrath WC; Nelson K; Weber A; Howald WN
    Antimicrob Agents Chemother; 2007 Aug; 51(8):2820-9. PubMed ID: 17526758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and Structural Characterization of Diverse NfsB Chloramphenicol Reductase Enzymes from Human Pathogens.
    Mullowney MW; Maltseva NI; Endres M; Kim Y; Joachimiak A; Crofts TS
    Microbiol Spectr; 2022 Apr; 10(2):e0013922. PubMed ID: 35195438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and Characterization of a Nitroreductase Capable of Conferring Bacterial Resistance to Chloramphenicol.
    Crofts TS; Sontha P; King AO; Wang B; Biddy BA; Zanolli N; Gaumnitz J; Dantas G
    Cell Chem Biol; 2019 Apr; 26(4):559-570.e6. PubMed ID: 30799223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitroreductase from Salmonella typhimurium: characterization and catalytic activity.
    Yanto Y; Hall M; Bommarius AS
    Org Biomol Chem; 2010 Apr; 8(8):1826-32. PubMed ID: 20449486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active-site residues.
    Hall KR; Robins KJ; Williams EM; Rich MH; Calcott MJ; Copp JN; Little RF; Schwörer R; Evans GB; Patrick WM; Ackerley DF
    Elife; 2020 Nov; 9():. PubMed ID: 33185191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45.
    Somerville CC; Nishino SF; Spain JC
    J Bacteriol; 1995 Jul; 177(13):3837-42. PubMed ID: 7601851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted disruption of the gene encoding the classical nitroreductase enzyme in Salmonella typhimurium Ames test strains TA1535 and TA1538.
    Yamada M; Espinosa-Aguirre JJ; Watanabe M; Matsui K; Sofuni T; Nohmi T
    Mutat Res; 1997 Apr; 375(1):9-17. PubMed ID: 9129675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cold-adapted nitroreductase from Psychrobactersp. ANT206: Heterologous expression, characterization and nitrobenzene reduction capacity.
    Wang Y; Hou Y; Wang Y; Zheng L; Wang Q
    Enzyme Microb Technol; 2019 Dec; 131():109434. PubMed ID: 31615682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic nitroreductase from the basidiomycete Phanerochaete chrysosporium.
    Rieble S; Joshi DK; Gold MH
    Biochem Biophys Res Commun; 1994 Nov; 205(1):298-304. PubMed ID: 7999039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene.
    Johnson GR; Spain JC
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):110-23. PubMed ID: 12750857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nitroreduction of chloramphenicol by human liver tissue.
    Salem Z; Murray T; Yunis AA
    J Lab Clin Med; 1981 Jun; 97(6):881-6. PubMed ID: 6894461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic sensitivity of Haemophilus influenzae strains including three recent chloramphenicol-resistant isolates.
    Zackrisson G; Brorson JE
    Acta Pathol Microbiol Scand B; 1980 Aug; 88(4):193-8. PubMed ID: 6968146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence on Salmonella typhimurium enzymes of mutagenicities of nitrobenzene and its derivatives in the presence of rat-liver S9 and norharman.
    Suzuki J; Takahashi N; Kobayashi Y; Miyamae R; Ohsawa M; Suzuki S
    Mutat Res; 1987 Jun; 178(2):187-93. PubMed ID: 3295532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a functional variant of chloramphenicol acetyltransferase in Haemophilus influenzae.
    Smith MD; Kelsey MC
    J Med Microbiol; 1989 Aug; 29(4):263-8. PubMed ID: 2668528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative susceptibilities of ampicillin and chloramphenicol resistant Haemophilus influenzae to fifteen antibiotics.
    Campos J; Garcia-Tornel S
    J Antimicrob Chemother; 1987 Mar; 19(3):297-301. PubMed ID: 3494722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel glutathione transferase from Haemophilus influenzae which has high affinity towards antibiotics.
    Dainelli B; Paludi D; Dragani B; Cocco R; Principe DR; Petrucci M; Mucilli F; Faraone A; Aceto A
    Int J Biochem Cell Biol; 2002 Aug; 34(8):916-20. PubMed ID: 12007629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico structure-function analysis of E. cloacae nitroreductase.
    Isayev O; Crespo-Hernández CE; Gorb L; Hill FC; Leszczynski J
    Proteins; 2012 Dec; 80(12):2728-41. PubMed ID: 22865652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous Overexpression and Biochemical Characterization of a Nitroreductase from Gluconobacter oxydans 621H.
    Yang Y; Lin J; Wei D
    Mol Biotechnol; 2016 Jun; 58(6):428-40. PubMed ID: 27138989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prodrugs for Nitroreductase Based Cancer Therapy- 1: Metabolite Profile, Cell Cytotoxicity and Molecular Modeling Interactions of Nitro Benzamides with Ssap-NtrB.
    Gungor T; Yetis G; Onder FC; Tokay E; Tok TT; Celik A; Ay M; Kockar F
    Med Chem; 2018; 14(5):495-507. PubMed ID: 29189173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.