These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30826517)

  • 41. The mechanism of wet/dry torrefaction pretreatment on the pyrolysis performance of tobacco stalk.
    Sun Y; He Z; Tu R; Wu YJ; Jiang EC; Xu XW
    Bioresour Technol; 2019 Aug; 286():121390. PubMed ID: 31078074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pyrolysis of palm kernel shell with internal recycling of heavy oil.
    Huang Y; Gao Y; Zhou H; Sun H; Zhou J; Zhang S
    Bioresour Technol; 2019 Jan; 272():77-82. PubMed ID: 30316194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor.
    Khan SR; Zeeshan M; Masood A
    Waste Manag; 2020 Apr; 106():21-31. PubMed ID: 32179418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pyrolysis of Torrefied Biomass.
    Chen Z; Wang M; Jiang E; Wang D; Zhang K; Ren Y; Jiang Y
    Trends Biotechnol; 2018 Dec; 36(12):1287-1298. PubMed ID: 30104012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-step pyrolysis of corncob for value-added chemicals and high-quality bio-oil: Effects of alkali and alkaline earth metals.
    Zhang L; Li S; Ding H; Zhu X
    Waste Manag; 2019 Mar; 87():709-718. PubMed ID: 31109573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative analysis of aqueous phases of bio-oils resulting from pyrolysis of different biomasses by two-dimensional comprehensive liquid chromatography.
    Lazzari E; Arena K; Caramão EB; Herrero M
    J Chromatogr A; 2019 Sep; 1602():359-367. PubMed ID: 31227362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of liquefied products from corn stalk and its biomass components by polyhydric alcohols with phosphoric acid.
    Zhang Y; Liu Z; Liu H; Hui L; Wang H; Liu H
    Carbohydr Polym; 2019 Jul; 215():170-178. PubMed ID: 30981342
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of hydrochloric acid washing on the microstructure and pyrolysis bio-oil components of sweet sorghum bagasse.
    Chen D; Gao D; Capareda SC; Huang S; Wang Y
    Bioresour Technol; 2019 Apr; 277():37-45. PubMed ID: 30658334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bio-oils from vacuum ablative pyrolysis of torrefied tobacco residues.
    Khuenkaeo N; MacQueen B; Onsree T; Daiya S; Tippayawong N; Lauterbach J
    RSC Adv; 2020 Sep; 10(58):34986-34995. PubMed ID: 35515664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood.
    Hassan el-BM; Steele PH; Ingram L
    Appl Biochem Biotechnol; 2009 May; 154(1-3):3-13. PubMed ID: 19050831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of torrefaction and densification on switchgrass pyrolysis products.
    Yang Z; Sarkar M; Kumar A; Tumuluru JS; Huhnke RL
    Bioresour Technol; 2014 Dec; 174():266-73. PubMed ID: 25463807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative study on fast pyrolysis of agricultural straw residues based on heat carrier circulation heating.
    Fu P; Yi W; Li Z; Li Y
    Bioresour Technol; 2019 Jan; 271():136-142. PubMed ID: 30268007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding the Impacts of AFEX™ Pretreatment and Densification on the Fast Pyrolysis of Corn Stover, Prairie Cord Grass, and Switchgrass.
    Sundaram V; Muthukumarappan K; Gent S
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1060-1079. PubMed ID: 27723010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.
    Zhang Y; Fan L; Liu S; Zhou N; Ding K; Peng P; Anderson E; Addy M; Cheng Y; Liu Y; Li B; Snyder J; Chen P; Ruan R
    Bioresour Technol; 2018 Jul; 259():461-464. PubMed ID: 29605465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil.
    Wang C; Luo Z; Diao R; Zhu X
    Bioresour Technol; 2019 Aug; 285():121370. PubMed ID: 31022576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermogravimetric kinetics of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata.
    Wu J; Gao S; Wan J; Zeng Y; Ma F; Zhang X
    Bioresour Technol; 2011 Apr; 102(8):5255-8. PubMed ID: 21353537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.
    Wang F; Zhang D; Wu H; Yi W; Fu P; Li Y; Li Z
    Bioresour Technol; 2016 Oct; 218():731-6. PubMed ID: 27420161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends.
    Paramasivam B; Kasimani R; Rajamohan S
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33806-33819. PubMed ID: 30280334
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.
    Liu S; Xie Q; Zhang B; Cheng Y; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2016 Mar; 204():164-170. PubMed ID: 26773959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors.
    Su Y; Zhang S; Liu L; Xu D; Xiong Y
    Bioresour Technol; 2018 Nov; 267():584-590. PubMed ID: 30056368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.