These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 30826518)
1. Granular activated carbon supplementation alters the metabolic flux of Clostridium butyricum for enhanced biohydrogen production. Park JH; Kim DH; Kim HS; Wells GF; Park HD Bioresour Technol; 2019 Jun; 281():318-325. PubMed ID: 30826518 [TBL] [Abstract][Full Text] [Related]
2. Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using Cell Net Analyzer. Rafieenia R; Chaganti SR Bioresour Technol; 2015 Jan; 175():613-8. PubMed ID: 25453441 [TBL] [Abstract][Full Text] [Related]
3. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides. Lee JY; Chen XJ; Lee EJ; Min KS J Microbiol Biotechnol; 2012 Mar; 22(3):400-6. PubMed ID: 22450797 [TBL] [Abstract][Full Text] [Related]
4. Acceleration of lactate-utilizing pathway for enhancing biohydrogen production by magnetite supplementation in Clostridium butyricum. Kim DH; Yoon JJ; Kim SH; Park JH Bioresour Technol; 2022 Sep; 359():127448. PubMed ID: 35691503 [TBL] [Abstract][Full Text] [Related]
5. Effect of bioaugmentation using Clostridium butyricum on the start-up and the performance of continuous biohydrogen production. Sim YB; Yang J; Kim SM; Joo HH; Jung JH; Kim DH; Kim SH Bioresour Technol; 2022 Dec; 366():128181. PubMed ID: 36307024 [TBL] [Abstract][Full Text] [Related]
6. Genetic manipulation of butyrate formation pathways in Clostridium butyricum. Cai G; Jin B; Saint C; Monis P J Biotechnol; 2011 Sep; 155(3):269-74. PubMed ID: 21787814 [TBL] [Abstract][Full Text] [Related]
7. Sodium (Na+) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis. Lee MJ; Kim TH; Min B; Hwang SJ J Environ Manage; 2012 Oct; 108():22-6. PubMed ID: 22634156 [TBL] [Abstract][Full Text] [Related]
8. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815 [TBL] [Abstract][Full Text] [Related]
9. Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Detman A; Mielecki D; Chojnacka A; Salamon A; Błaszczyk MK; Sikora A Microb Cell Fact; 2019 Feb; 18(1):36. PubMed ID: 30760264 [TBL] [Abstract][Full Text] [Related]
10. A genetic and metabolic approach to redirection of biochemical pathways of Clostridium butyricum for enhancing hydrogen production. Cai G; Jin B; Monis P; Saint C Biotechnol Bioeng; 2013 Jan; 110(1):338-42. PubMed ID: 22753004 [TBL] [Abstract][Full Text] [Related]
11. Biohydrogen production by co-fermentation of crude glycerol and apple pomace hydrolysate using co-culture of Enterobacter aerogenes and Clostridium butyricum. Pachapur VL; Sarma SJ; Brar SK; Le Bihan Y; Buelna G; Verma M Bioresour Technol; 2015 Oct; 193():297-306. PubMed ID: 26142996 [TBL] [Abstract][Full Text] [Related]
12. [Effect of initial substrate concentrations and pH on hydrogen production from xylose with Clostridium butyricum T4]. Qiu J; Xu J; Ren N Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):887-91. PubMed ID: 19777817 [TBL] [Abstract][Full Text] [Related]
13. Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Wang MY; Olson BH; Chang JS Appl Microbiol Biotechnol; 2008 Mar; 78(3):525-32. PubMed ID: 18193215 [TBL] [Abstract][Full Text] [Related]
14. Process optimization of biological hydrogen production from molasses by a newly isolated Clostridium butyricum W5. Wang X; Jin B J Biosci Bioeng; 2009 Feb; 107(2):138-44. PubMed ID: 19217551 [TBL] [Abstract][Full Text] [Related]
15. Metabolic flux network analysis of hydrogen production from crude glycerol by Clostridium pasteurianum. Sarma S; Anand A; Dubey VK; Moholkar VS Bioresour Technol; 2017 Oct; 242():169-177. PubMed ID: 28456454 [TBL] [Abstract][Full Text] [Related]
16. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum. Dan Jiang ; Fang Z; Chin SX; Tian XF; Su TC Sci Rep; 2016 Jun; 6():27205. PubMed ID: 27251222 [TBL] [Abstract][Full Text] [Related]
17. Photoheterotrophic growth of Chlorella vulgaris ESP6 on organic acids from dark hydrogen fermentation effluents. Liu CH; Chang CY; Liao Q; Zhu X; Chang JS Bioresour Technol; 2013 Oct; 145():331-6. PubMed ID: 23305898 [TBL] [Abstract][Full Text] [Related]
18. Nickel-iron doped on granular activated carbon for efficient immobilization in biohydrogen production. Jamaludin NFM; Abdullah LC; Idrus S; Engliman NS; Tan JP; Jamali NS Bioresour Technol; 2024 Jan; 391(Pt A):129933. PubMed ID: 37898370 [TBL] [Abstract][Full Text] [Related]
19. Insight into furfural-tolerant and hydrogen-producing microbial consortia: Mechanism of furfural tolerance and hydrogen production. Luo LL; Zhu MJ Bioresour Technol; 2024 Sep; 407():131141. PubMed ID: 39047800 [TBL] [Abstract][Full Text] [Related]
20. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress. Lin X; Xia Y; Yan Q; Shen W; Zhao M Bioresour Technol; 2014 Mar; 155():98-103. PubMed ID: 24434699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]