BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30826530)

  • 1. Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering.
    Cao Y; Yao Y; Li Y; Yang X; Cao Z; Yang G
    J Colloid Interface Sci; 2019 May; 544():121-129. PubMed ID: 30826530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy.
    Chen M; Ren X; Dong L; Li X; Cheng H
    Int J Biol Macromol; 2021 Jul; 182():1259-1267. PubMed ID: 33991559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications.
    Han S; Ham TR; Haque S; Sparks JL; Saul JM
    Acta Biomater; 2015 Sep; 23():201-213. PubMed ID: 25997587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery.
    Ham TR; Lee RT; Han S; Haque S; Vodovotz Y; Gu J; Burnett LR; Tomblyn S; Saul JM
    Biomacromolecules; 2016 Jan; 17(1):225-36. PubMed ID: 26636618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.
    Wu SW; Liu X; Miller AL; Cheng YS; Yeh ML; Lu L
    Carbohydr Polym; 2018 Jul; 192():308-316. PubMed ID: 29691026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-triggered in situ forming keratin hydrogel for the treatment of diabetic wounds.
    Chen Y; Li Y; Yang X; Cao Z; Nie H; Bian Y; Yang G
    Acta Biomater; 2021 Apr; 125():208-218. PubMed ID: 33662598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels for drug release.
    Deng S; Li X; Yang W; He K; Ye X
    J Biomater Sci Polym Ed; 2018 Sep; 29(13):1643-1655. PubMed ID: 29793378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating Thiol p K
    Bermejo-Velasco D; Azémar A; Oommen OP; Hilborn J; Varghese OP
    Biomacromolecules; 2019 Mar; 20(3):1412-1420. PubMed ID: 30726668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability.
    Nakata R; Osumi Y; Miyagawa S; Tachibana A; Tanabe T
    J Biosci Bioeng; 2015 Jul; 120(1):111-6. PubMed ID: 25561327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels.
    Bajestani MI; Kader S; Monavarian M; Mousavi SM; Jabbari E; Jafari A
    Int J Biol Macromol; 2020 Jan; 142():790-802. PubMed ID: 31622720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rational approach to form disulfide linked mucin hydrogels.
    Joyner K; Song D; Hawkins RF; Silcott RD; Duncan GA
    Soft Matter; 2019 Dec; 15(47):9632-9639. PubMed ID: 31651920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation.
    Barati D; Kader S; Pajoum Shariati SR; Moeinzadeh S; Sawyer RH; Jabbari E
    Biomacromolecules; 2017 Feb; 18(2):398-412. PubMed ID: 28000441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducible disulfide poly(beta-amino ester) hydrogels for antioxidant delivery.
    Lakes AL; Jordan CT; Gupta P; Puleo DA; Hilt JZ; Dziubla TD
    Acta Biomater; 2018 Mar; 68():178-189. PubMed ID: 29289681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of polymer-hydrogel capsules via thiol-disulfide exchange.
    Chong SF; Chandrawati R; Städler B; Park J; Cho J; Wang Y; Jia Z; Bulmus V; Davis TP; Zelikin AN; Caruso F
    Small; 2009 Nov; 5(22):2601-10. PubMed ID: 19771568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery.
    Wang L; Deng F; Wang W; Li A; Lu C; Chen H; Wu G; Nan K; Li L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36721-36732. PubMed ID: 30261143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology and texture analysis of gelatin/dialdehyde starch hydrogel carriers for curcumin controlled release.
    Cui T; Wu Y; Ni C; Sun Y; Cheng J
    Carbohydr Polym; 2022 May; 283():119154. PubMed ID: 35153020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical release nanospheres containing cell growth factor from biopolymer hydrogel via reversible covalent conjugation.
    Ren B; Chen X; Ma Y; Du S; Qian S; Xu Y; Yan Z; Li J; Jia Y; Tan H; Ling Z; Chen Y; Hu X
    J Biomater Sci Polym Ed; 2018 Aug; 29(11):1344-1359. PubMed ID: 29609508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-Responsive Hydrogels with Decoupled Initial Stiffness and Degradation.
    Lin CY; Battistoni CM; Liu JC
    Biomacromolecules; 2021 Dec; 22(12):5270-5280. PubMed ID: 34793135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.