These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30826561)

  • 1. In situ lysis droplet supply to efficiently extract ATP from dust particles for near-real-time bioaerosol monitoring.
    Kim HR; An S; Hwang J; Park JH; Byeon JH
    J Hazard Mater; 2019 May; 369():684-690. PubMed ID: 30826561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.
    Park JW; Kim HR; Hwang J
    Anal Chim Acta; 2016 Oct; 941():101-107. PubMed ID: 27692374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols.
    Liao L; Byeon JH; Park JH
    Environ Res; 2021 Mar; 194():110615. PubMed ID: 33309960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-classified monitoring of ATP bioluminescence for rapid assessment of biological distribution in airborne particulates.
    Oh J; Choi J; Massoudifarid M; Park JY; Hwang J; Lim J; Byeon JH
    Biosens Bioelectron; 2023 Aug; 234():115356. PubMed ID: 37172362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification.
    Chen Z; Liang Z; Li G; Das R; Chen P; An T
    Sci Total Environ; 2024 Aug; 937():173404. PubMed ID: 38797419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.
    Park CW; Park JW; Lee SH; Hwang J
    Biosens Bioelectron; 2014 Feb; 52():379-83. PubMed ID: 24080217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System.
    Cho YS; Kim HR; Ko HS; Jeong SB; Chan Kim B; Jung JH
    ACS Sens; 2020 Feb; 5(2):395-403. PubMed ID: 31913022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine triphosphate (ATP) bioluminescence-based strategies for monitoring atmospheric bioaerosols.
    Zhang Y; Liu B; Tong Z
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1327-1340. PubMed ID: 36226866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.
    Park JW; Park CW; Lee SH; Hwang J
    PLoS One; 2015; 10(5):e0125251. PubMed ID: 25950929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols.
    Yoon KY; Park CW; Byeon JH; Hwang J
    Environ Sci Technol; 2010 Mar; 44(5):1742-6. PubMed ID: 20143821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler.
    Madsen AM; Sharma AK
    Ann Occup Hyg; 2008 Apr; 52(3):167-76. PubMed ID: 18326871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration of bioaerosols in composting plants using different quantification methods.
    van Kampen V; Sander I; Liebers V; Deckert A; Neumann HD; Buxtrup M; Willer E; Felten C; Jäckel U; Klug K; Brüning T; Raulf M; Bünger J
    Ann Occup Hyg; 2014 Jul; 58(6):693-706. PubMed ID: 24759376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerosol-to-Hydrosol Sampling and Simultaneous Enrichment of Airborne Bacteria For Rapid Biosensing.
    Kim HR; An S; Hwang J
    ACS Sens; 2020 Sep; 5(9):2763-2771. PubMed ID: 32493010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols.
    Heo KJ; Ko HS; Jeong SB; Kim SB; Jung JH
    Nano Lett; 2021 Jan; 21(2):1017-1024. PubMed ID: 33444028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New comprehensive approach for airborne asbestos characterisation and monitoring.
    Klán M; Pokorná P; Havlíček D; Vik O; Racek M; Plocek J; Hovorka J
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30488-30496. PubMed ID: 30168111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field testing of a personal size-selective bioaerosol sampler.
    Kenny LC; Bowry A; Crook B; Stancliffe JD
    Ann Occup Hyg; 1999 Aug; 43(6):393-404. PubMed ID: 10518465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
    Lim CC; Thurston GD; Shamy M; Alghamdi M; Khoder M; Mohorjy AM; Alkhalaf AK; Brocato J; Chen LC; Costa M
    J Air Waste Manag Assoc; 2018 Feb; 68(2):123-138. PubMed ID: 28635552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition and Distribution Analysis of Bioaerosols Under Different Environmental Conditions.
    Wang Z; Li J; Qian L; Liu L; Qian J; Lu B; Guo Z
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol.
    Perrino C; Marcovecchio F
    Environ Int; 2016 Feb; 87():108-15. PubMed ID: 26680730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory evaluation of a low-cost, real-time, aerosol multi-sensor.
    Vercellino RJ; Sleeth DK; Handy RG; Min KT; Collingwood SC
    J Occup Environ Hyg; 2018 Jul; 15(7):559-567. PubMed ID: 29683781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.