These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 30826672)
41. Current status and future tendency of lake eutrophication in China. Jin X; Xu Q; Huang C Sci China C Life Sci; 2005 Dec; 48 Spec No():948-54. PubMed ID: 16512216 [TBL] [Abstract][Full Text] [Related]
42. [Characteristics of optical absorption coefficients and their differences in typical seasons in Lake Qiandaohu]. Wang MZ; Zhang YL; Shi K; Gao Y; Liu G; Jiang H Huan Jing Ke Xue; 2014 Jul; 35(7):2528-38. PubMed ID: 25244834 [TBL] [Abstract][Full Text] [Related]
43. Spatiotemporal variability of phytoplankton functional groups in a shallow eutrophic lake from cold, arid regions. Jin Y; Yu R; Zhang Z; Zhang Q; Li M; Cao Z; Wu L; Hao Y Environ Monit Assess; 2020 May; 192(6):371. PubMed ID: 32415539 [TBL] [Abstract][Full Text] [Related]
44. Precipitation and temperature drive seasonal variation in bioaccumulation of polycyclic aromatic hydrocarbons in the planktonic food webs of a subtropical shallow eutrophic lake in China. Tao Y; Yu J; Xue B; Yao S; Wang S Sci Total Environ; 2017 Apr; 583():447-457. PubMed ID: 28110880 [TBL] [Abstract][Full Text] [Related]
45. Optical characterization of black water blooms in eutrophic waters. Duan H; Ma R; Loiselle SA; Shen Q; Yin H; Zhang Y Sci Total Environ; 2014 Jun; 482-483():174-83. PubMed ID: 24657365 [TBL] [Abstract][Full Text] [Related]
46. Response of the phytoplankton community to water quality in a local alpine glacial lake of Xinjiang Tianchi, China: potential drivers and management implications. Lu X; Song S; Lu Y; Wang T; Liu Z; Li Q; Zhang M; Suriyanarayanan S; Jenkins A Environ Sci Process Impacts; 2017 Oct; 19(10):1300-1311. PubMed ID: 28858346 [TBL] [Abstract][Full Text] [Related]
47. Characterization of CDOM absorption of reservoirs with its linkage of regions and ages across China. Shang Y; Song K; Wen Z; Lyu L; Zhao Y; Fang C; Zhang B Environ Sci Pollut Res Int; 2018 Jun; 25(16):16009-16023. PubMed ID: 29589248 [TBL] [Abstract][Full Text] [Related]
48. A Study on Algae Bloom Pigment in the Eutrophic Lake Using Bio-Optical Modelling: Hyperspectral Remote Sensing Approach. Vishnu Prasanth BR; Sivakumar R; Ramaraj M Bull Environ Contam Toxicol; 2022 Dec; 109(6):962-968. PubMed ID: 35366066 [TBL] [Abstract][Full Text] [Related]
49. Suspended particulate matter (SPM)-bound polycyclic aromatic hydrocarbons (PAHs) in lakes and reservoirs across a large geographical scale. He Y; Song K; Yang C; Li Y; He W; Xu F Sci Total Environ; 2021 Jan; 752():142863. PubMed ID: 33207515 [TBL] [Abstract][Full Text] [Related]
50. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. Isenstein EM; Park MH J Environ Sci (China); 2014 Sep; 26(9):1831-6. PubMed ID: 25193831 [TBL] [Abstract][Full Text] [Related]
51. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing. Xu J; Lei S; Bi S; Li Y; Lyu H; Xu J; Xu X; Mu M; Miao S; Zeng S; Zheng Z Water Res; 2020 Jan; 168():115162. PubMed ID: 31629230 [TBL] [Abstract][Full Text] [Related]
52. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
53. Estimation of K Wen Z; Song K; Fang C; Yang Q; Liu G; Shang Y; Wang X Environ Sci Pollut Res Int; 2019 Oct; 26(29):30098-30111. PubMed ID: 31418147 [TBL] [Abstract][Full Text] [Related]
54. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the water and suspended sediments from the middle and lower reaches of the Yangtze River, China. Wang C; Zou X; Zhao Y; Li B; Song Q; Li Y; Yu W Environ Sci Pollut Res Int; 2016 Sep; 23(17):17158-70. PubMed ID: 27215984 [TBL] [Abstract][Full Text] [Related]
55. Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: An analysis of 143 lakes in China. Ding J; Cao J; Xu Q; Xi B; Su J; Gao R; Huo S; Liu H J Environ Sci (China); 2015 Apr; 30():140-7. PubMed ID: 25872720 [TBL] [Abstract][Full Text] [Related]
56. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Soomets T; Uudeberg K; Jakovels D; Brauns A; Zagars M; Kutser T Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013214 [TBL] [Abstract][Full Text] [Related]
57. Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes. Zhou Y; Song K; Han R; Riya S; Xu X; Yeerken S; Geng S; Ma Y; Terada A Environ Pollut; 2020 Oct; 265(Pt B):114919. PubMed ID: 32540596 [TBL] [Abstract][Full Text] [Related]
58. Remote monitoring of total dissolved phosphorus in eutrophic Lake Taihu based on a novel algorithm: Implications for contributing factors and lake management. Zeng S; Lei S; Li Y; Lyu H; Dong X; Li J; Cai X Environ Pollut; 2022 Mar; 296():118740. PubMed ID: 34971740 [TBL] [Abstract][Full Text] [Related]
59. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China. Cai X; Li Y; Lei S; Zeng S; Zhao Z; Lyu H; Dong X; Li J; Wang H; Xu J; Zhu Y; Wu L; Cheng X Sci Total Environ; 2023 Jan; 856(Pt 1):158869. PubMed ID: 36152846 [TBL] [Abstract][Full Text] [Related]
60. Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China. Qi H; Lu J; Chen X; Sauvage S; Sanchez-Pérez JM Environ Sci Pollut Res Int; 2016 Jul; 23(13):13327-41. PubMed ID: 27023820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]