These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30826854)

  • 1. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh.
    Yan H; Zhou D; Shi B; Zhang Z; Tian H; Yu L; Wang Y; Guan X; Wang Z; Wang D
    Eur Biophys J; 2019 Apr; 48(3):261-266. PubMed ID: 30826854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanopore-nanofiber mesh biosensor to control DNA translocation.
    Squires AH; Hersey JS; Grinstaff MW; Meller A
    J Am Chem Soc; 2013 Nov; 135(44):16304-7. PubMed ID: 24143914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine.
    Vu T; Borgesi J; Soyring J; D'Alia M; Davidson SL; Shim J
    Nanoscale; 2019 May; 11(21):10536-10545. PubMed ID: 31116213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slowing down DNA translocation through a nanopore in lithium chloride.
    Kowalczyk SW; Wells DB; Aksimentiev A; Dekker C
    Nano Lett; 2012 Feb; 12(2):1038-44. PubMed ID: 22229707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.
    Barati Farimani A; Dibaeinia P; Aluru NR
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):92-100. PubMed ID: 28004567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long dwell-time passage of DNA through nanometer-scale pores: kinetics and sequence dependence of motion.
    Jetha NN; Feehan C; Wiggin M; Tabard-Cossa V; Marziali A
    Biophys J; 2011 Jun; 100(12):2974-80. PubMed ID: 21689531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gel mesh as "brake" to slow down DNA translocation through solid-state nanopores.
    Tang Z; Liang Z; Lu B; Li J; Hu R; Zhao Q; Yu D
    Nanoscale; 2015 Aug; 7(31):13207-14. PubMed ID: 26181489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore.
    He Y; Tsutsui M; Scheicher RH; Fan C; Taniguchi M; Kawai T
    Biophys J; 2013 Aug; 105(3):776-82. PubMed ID: 23931325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substantial Slowing of Electrophoretic Translocation of DNA through a Nanopore Using Coherent Multiple Entropic Traps.
    Chen K; Muthukumar M
    ACS Nano; 2023 May; 17(10):9197-9208. PubMed ID: 37146154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slowing down DNA translocation through a nanopore by lowering fluid temperature.
    Yeh LH; Zhang M; Joo SW; Qian S
    Electrophoresis; 2012 Dec; 33(23):3458-65. PubMed ID: 23124983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore.
    Ivica J; Williamson PTF; de Planque MRR
    Anal Chem; 2017 Sep; 89(17):8822-8829. PubMed ID: 28750163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating DNA translocation through functionalized soft nanopores.
    Yeh LH; Zhang M; Qian S; Hsu JP
    Nanoscale; 2012 Apr; 4(8):2685-93. PubMed ID: 22422141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed detection of DNA translocation in nanopipettes.
    Fraccari RL; Ciccarella P; Bahrami A; Carminati M; Ferrari G; Albrecht T
    Nanoscale; 2016 Apr; 8(14):7604-11. PubMed ID: 26985713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal fabrication of nanofiber membranes from ionized-bicomponent cellulose/polyethyleneoxide solutions.
    Broumand A; Emam-Djomeh Z; Khodaiyan F; Davoodi D; Mirzakhanlouei S
    Int J Biol Macromol; 2014 May; 66():221-8. PubMed ID: 24582937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the sensitivity of DNA detection by structurally modified solid-state nanopore.
    Lee K; Lee H; Lee SH; Kim HM; Kim KB; Kim SJ
    Nanoscale; 2017 Nov; 9(45):18012-18021. PubMed ID: 29131223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electro-osmotic trapping and compression of single DNA molecules while passing through a nanopore.
    Yamazaki H; Mizuguchi T; Esashika K; Saiki T
    Analyst; 2019 Sep; 144(18):5381-5388. PubMed ID: 31463499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.