These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30827025)

  • 21. In-situ reactivation and reuse of micronsized sulfidated zero-valent iron using SRB-enriched culture: A sustainable PRB technology.
    Yang Y; Zhan C; Li Y; Zeng J; Lin K; Sun J; Jiang F
    Water Res; 2024 Apr; 253():121270. PubMed ID: 38359598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of a field-scale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater.
    Gibert O; Assal A; Devlin H; Elliot T; Kalin RM
    Sci Total Environ; 2019 Apr; 659():211-220. PubMed ID: 30599340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives.
    Amoako-Nimako GK; Yang X; Chen F
    Environ Sci Pollut Res Int; 2021 May; 28(17):21045-21064. PubMed ID: 33728604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer.
    Hosseini SM; Tosco T
    J Contam Hydrol; 2015 Aug; 179():182-95. PubMed ID: 26142547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination.
    Budania R; Dangayach S
    J Environ Manage; 2023 Apr; 332():117343. PubMed ID: 36758361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced reductive dechlorination of 1,1,1-trichloroethane using zero-valent iron-biochar-carrageenan microspheres: preparation and microcosm study.
    Ji C; Meng L; Wang H
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):30584-30595. PubMed ID: 29349739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications.
    Singh R; Chakma S; Birke V
    Sci Total Environ; 2023 Feb; 858(Pt 1):158838. PubMed ID: 36122715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage.
    Gibert O; Cortina JL; de Pablo J; Ayora C
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7854-62. PubMed ID: 23361181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The biological denitrification coupled with chemical reduction for groundwater nitrate remediation via using SCCMs as carbon source.
    Zhang W; Bai Y; Ruan X; Yin L
    Chemosphere; 2019 Nov; 234():89-97. PubMed ID: 31203045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.
    Broholm MM; Hunkeler D; Tuxen N; Jeannottat S; Scheutz C
    Chemosphere; 2014 Aug; 108():265-73. PubMed ID: 24559936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The reductive degradation of 1,1,1-trichloroethane by Fe(0) in a soil slurry system.
    Wu X; Lu S; Qiu Z; Sui Q; Lin K; Du X; Luo Q
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1401-10. PubMed ID: 23904257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum.
    Yang MI; Previdsa M; Edwards EA; Sleep BE
    Water Res; 2020 Nov; 186():116310. PubMed ID: 32858243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sodium alginate/graphene oxide hydrogel beads as permeable reactive barrier material for the remediation of ciprofloxacin-contaminated groundwater.
    Zhao P; Yu F; Wang R; Ma Y; Wu Y
    Chemosphere; 2018 Jun; 200():612-620. PubMed ID: 29510369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of SO on 1,1,1-trichloroethane degradation by Fe(0) in aqueous solution.
    Yu J; Liu W; Zeng A; Guan B; Xu X
    Ground Water; 2013 Mar; 51(2):286-92. PubMed ID: 22716098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential and mechanism analysis of sulfate influence on the degradation of 1,1,2- trichloroethane by nano- and micron-size zero-valent iron.
    Li Y; Wu N; Song J; Wang Z; Li P; Song Y
    Environ Technol; 2024 May; 45(13):2612-2627. PubMed ID: 36763460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.
    Danish M; Gu X; Lu S; Naqvi M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13298-307. PubMed ID: 27023817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers.
    Baric M; Pierro L; Pietrangeli B; Papini MP
    N Biotechnol; 2014 Jun; 31(4):377-82. PubMed ID: 24185077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Should the term 'metallic iron' appear in the title of a research paper?
    Noubactep C
    Chemosphere; 2022 Jan; 287(Pt 4):132314. PubMed ID: 34600924
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.
    Borden RC
    J Contam Hydrol; 2007 Oct; 94(1-2):13-33. PubMed ID: 17614158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process.
    Li B; Li L; Lin K; Zhang W; Lu S; Luo Q
    Ultrason Sonochem; 2013 May; 20(3):855-63. PubMed ID: 23266439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.