These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30827209)

  • 1. Effect of internal chain-like structures on magnetic hyperthermia in non-liquid media.
    Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180213. PubMed ID: 30827209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interparticle interaction on magnetic hyperthermia: homogeneous spatial distribution of the particles.
    Abu-Bakr AF; Zubarev A
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180216. PubMed ID: 30827219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ring-shaped clusters on magnetic hyperthermia: modelling approach.
    Abu-Bakr AF; Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200316. PubMed ID: 34275367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous materials: metastable and non-ergodic internal structures.
    Alexandrov DV; Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180353. PubMed ID: 30827206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of magnetic gels containing rod-like composite particles.
    Abrougui MM; Lopez-Lopez MT; Duran JDG
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180218. PubMed ID: 30827211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the theory of magnetic hyperthermia: clusterization of nanoparticles.
    Abu-Bakr AF; Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190251. PubMed ID: 32279630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic hyperthermia in a system of immobilized magnetically interacting particles.
    Zubarev AY
    Phys Rev E; 2019 Jun; 99(6-1):062609. PubMed ID: 31330714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of linear aggregates in magnetic hyperthermia: implications on specific absorption rate and magnetic anisotropy.
    Saville SL; Qi B; Baker J; Stone R; Camley RE; Livesey KL; Ye L; Crawford TM; Mefford OT
    J Colloid Interface Sci; 2014 Jun; 424():141-51. PubMed ID: 24767510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic magnetic hydrogels: design, structure and mechanical properties.
    Gila-Vilchez C; Mañas-Torres MC; Contreras-Montoya R; Alaminos M; Duran JDG; de Cienfuegos LÁ; Lopez-Lopez MT
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180217. PubMed ID: 30827221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles.
    Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F
    J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nonlinear growth rates of spherical crystals and their withdrawal rate from a crystallizer on the particle-size distribution function.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180210. PubMed ID: 30827205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.
    Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M
    Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic susceptibility of soft ferrogels. Effect of interparticle interaction.
    Zubarev AY
    Soft Matter; 2023 Oct; 19(41):7988-7994. PubMed ID: 37819192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.
    Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY
    Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase transformations in metastable liquids combined with polymerization.
    Ivanov AA; Alexandrova IV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180215. PubMed ID: 30827217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid phase separation in undercooled Cu-Co alloys under the influence of static magnetic fields.
    Zhao D; Gao J
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180207. PubMed ID: 30827210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects.
    Munoz-Menendez C; Conde-Leboran I; Baldomir D; Chubykalo-Fesenko O; Serantes D
    Phys Chem Chem Phys; 2015 Nov; 17(41):27812-20. PubMed ID: 26437746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of static magnetization of magnetopolymer composites: The second virial approximation.
    Elfimova EA; Iskakova LY; Solovyova AY; Zubarev AY
    Phys Rev E; 2021 Nov; 104(5-1):054616. PubMed ID: 34942844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.